-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathMakeFigure.py
340 lines (278 loc) · 14.7 KB
/
MakeFigure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
# -*- coding: utf-8 -*-
"""
Created on Fri Apr 16 16:23:29 2021
@author: hcji
"""
import matplotlib
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
from scipy.optimize import curve_fit
from adjustText import adjust_text
matplotlib.use("Qt5Agg")
from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas
from matplotlib.figure import Figure
from PyQt5 import QtCore, QtGui, QtWidgets
from seaborn import violinplot, boxplot, scatterplot, color_palette, heatmap
from Utils import meltCurve
class MakeFigure(FigureCanvas):
def __init__(self,width=5, height=5, dpi=300):
self.fig = Figure(figsize=(width, height), dpi=dpi)
self.fig.subplots_adjust(top=0.95,bottom=0.2,left=0.15,right=0.85)
super(MakeFigure,self).__init__(self.fig)
self.axes = self.fig.add_subplot(111)
self.axes.spines['bottom'].set_linewidth(0.5)
self.axes.spines['left'].set_linewidth(0.5)
self.axes.spines['right'].set_linewidth(0.5)
self.axes.spines['top'].set_linewidth(0.5)
self.axes.tick_params(labelsize=5)
FigureCanvas.setSizePolicy(self, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding)
FigureCanvas.updateGeometry(self)
def ProteinComplexFigure(self, proteinSubunit, proteinData, colNames):
self.fig.subplots_adjust(top=0.95,bottom=0.2,left=0.15,right=0.8)
prots = proteinSubunit.split(',')
prots = [p.replace('(', '') for p in prots]
prots = [p.replace(')', '') for p in prots]
try:
temps = np.array([float(t.replace('T', '')) for t in colNames])
temps_ = np.arange(temps[0], temps[-1], 0.1)
except:
raise ValueError('invalid column names')
pltData = dict()
for p in prots:
if p in list(proteinData['Accession']):
vals = proteinData.loc[proteinData.loc[:, 'Accession'] == p, colNames]
pltData[p] = vals.values[0,:]
self.axes.cla()
for p, vec in pltData.items():
paras = curve_fit(meltCurve, temps, vec, bounds=(0, [float('inf'), float('inf'), 0.3]))[0]
self.axes.scatter(temps, vec, marker='.', label = p, s = 15)
self.axes.plot(temps_, meltCurve(temps_, paras[0], paras[1], paras[2]), lw = 1)
self.axes.set_xlabel('Temperature (℃)', fontsize=6)
self.axes.set_ylabel('Abundances', fontsize=6)
self.axes.tick_params(labelsize=5)
self.axes.legend(fontsize=4.5, bbox_to_anchor=(1,1), loc="upper left")
self.draw()
def AverageTSAFigure(self, proteinData1, proteinData2, colNames):
try:
temps = np.array([float(t.replace('T', '')) for t in colNames])
except:
raise ValueError('invalid column names')
vec_1 = np.mean(proteinData1.loc[:, colNames], axis = 0)
vec_2 = np.mean(proteinData2.loc[:, colNames], axis = 0)
self.axes.cla()
self.axes.plot(temps, vec_1, label = 'Group 1')
self.axes.plot(temps, vec_2, label = 'Group 2')
self.axes.tick_params(labelsize=4)
self.axes.set_xlabel('Temperature (℃)', fontsize=5)
self.axes.set_ylabel('Abundances', fontsize=5)
self.axes.legend(fontsize=4)
self.draw()
def SingleTSAFigure(self, proteinData1, proteinData2, colNames, ProteinAccession, proteinData3=None, proteinData4=None):
try:
temps = np.array([float(t.replace('T', '')) for t in colNames])
temps_ = np.arange(temps[0], temps[-1], 0.1)
except:
raise ValueError('invalid column names')
vec_1 = proteinData1.loc[proteinData1.loc[:, 'Accession'] == ProteinAccession, colNames].values[0,:]
vec_2 = proteinData2.loc[proteinData2.loc[:, 'Accession'] == ProteinAccession, colNames].values[0,:]
paras1 = curve_fit(meltCurve, temps, vec_1, bounds=(0, [float('inf'), float('inf'), 0.3]))[0]
paras2 = curve_fit(meltCurve, temps, vec_2, bounds=(0, [float('inf'), float('inf'), 0.3]))[0]
self.axes.cla()
self.axes.scatter(temps, vec_1, marker='.', label = 'Group 1_{}'.format(ProteinAccession), color='b', s = 10)
self.axes.scatter(temps, vec_2, marker='.', label = 'Group 2_{}'.format(ProteinAccession), color='r', s = 10)
self.axes.plot(temps_, meltCurve(temps_, paras1[0], paras1[1], paras1[2]), color='b', lw=1)
self.axes.plot(temps_, meltCurve(temps_, paras2[0], paras2[1], paras2[2]), color='r', lw=1)
if (proteinData3 is not None) and (proteinData4 is not None):
vec_3 = proteinData3.loc[proteinData3.loc[:, 'Accession'] == ProteinAccession, colNames].values[0,:]
vec_4 = proteinData4.loc[proteinData4.loc[:, 'Accession'] == ProteinAccession, colNames].values[0,:]
paras3 = curve_fit(meltCurve, temps, vec_3, bounds=(0, [float('inf'), float('inf'), 0.3]))[0]
paras4 = curve_fit(meltCurve, temps, vec_4, bounds=(0, [float('inf'), float('inf'), 0.3]))[0]
self.axes.scatter(temps, vec_3, marker='.', label = 'Group 1_r2_{}'.format(ProteinAccession), color='b', s = 10)
self.axes.scatter(temps, vec_4, marker='.', label = 'Group 2_r2_{}'.format(ProteinAccession), color='r', s = 10)
self.axes.plot(temps_, meltCurve(temps_, paras3[0], paras3[1], paras3[2]), color='b', linestyle='--', lw=1)
self.axes.plot(temps_, meltCurve(temps_, paras4[0], paras4[1], paras4[2]), color='r', linestyle='--', lw=1)
self.axes.tick_params(labelsize=4)
self.axes.set_xlabel('Temperature (℃)', fontsize=5)
self.axes.set_ylabel('Abundances', fontsize=5)
self.axes.legend(fontsize=3)
self.draw()
def RankTSAResults(self, resultTable):
self.axes.cla()
self.axes.scatter(1 + np.arange(len(resultTable)), resultTable.loc[:,'Score'], s = 3)
for i in range(min(len(resultTable.index), 10)):
j = resultTable.index[i]
x, y, s = i, resultTable.loc[j, 'Score'], resultTable.loc[j, 'Accession'].split(';')[0]
self.axes.text(x, y, s, fontsize = 4, color='r')
self.draw()
def RSDHistFigure(self, rsdList):
rsdList = [i for i in rsdList if not np.isnan(i)]
self.axes.cla()
self.axes.hist(rsdList, 100)
self.axes.tick_params(labelsize=4)
self.axes.set_xlabel('RSD', fontsize=4)
self.axes.set_ylabel('Number', fontsize=4)
self.draw()
def ROCFigure(self, fpr, tpr, auroc):
self.axes.cla()
self.axes.plot(fpr, tpr, label='AUC = {}'.format(auroc), color = 'red', lw=0.7)
self.axes.plot([0, 1], [0, 1], color='black', linestyle='--', lw=0.7)
self.axes.set_xlabel('False Positive Rate', fontsize = 5)
self.axes.set_ylabel('True Positive Rate', fontsize = 5)
self.axes.tick_params(labelsize=4)
self.axes.legend(fontsize=3)
self.draw()
def ProteinPairFigure(self, p1, p2, proteinData, colNames):
prots = [p1, p2]
try:
temps = np.array([float(t.replace('T', '')) for t in colNames])
temps_ = np.arange(temps[0], temps[-1], 0.1)
except:
raise ValueError('invalid column names')
pltData = dict()
for p in prots:
if p in list(proteinData['Accession']):
vals = proteinData.loc[proteinData.loc[:, 'Accession'] == p, colNames]
pltData[p] = vals.values[0,:]
self.axes.cla()
for p, vec in pltData.items():
paras = curve_fit(meltCurve, temps, vec, bounds=(0, [float('inf'), float('inf'), 0.3]))[0]
self.axes.scatter(temps, vec, marker='.', label = p, s = 5)
self.axes.plot(temps_, meltCurve(temps_, paras[0], paras[1], paras[2]), lw=1)
self.axes.set_xlabel('Temperature (℃)', fontsize=6)
self.axes.set_ylabel('Abundances', fontsize=6)
self.axes.legend(fontsize=4)
self.draw()
def iTSA_Volcano(self, iTSA_result, fc_thres, pv_thres, show_marker=False):
fc = iTSA_result['logFC']
pv = iTSA_result['-logAdjPval']
lb = iTSA_result['Accession']
group = []
for i in range(len(pv)):
if (abs(fc[i]) < np.log2(fc_thres)) and (pv[i] < -np.log10(pv_thres)):
group.append('Not sig')
elif (abs(fc[i]) >= np.log2(fc_thres)) and (pv[i] < -np.log10(pv_thres)):
group.append('Fold change')
elif (abs(fc[i]) < np.log2(fc_thres)) and (pv[i] >= -np.log10(pv_thres)):
group.append('Score')
else:
group.append('Both sig')
pltdata = pd.DataFrame({'LB':lb, 'FC': fc, 'PV': pv, 'G': group})
# sig = np.where(np.logical_and(np.abs(fc) >= np.log2(fc_thres), pv >= -np.log10(pv_thres)))[0]
self.axes.cla()
scatterplot(data=pltdata, x="FC", y="PV", hue="G", palette='tab10', legend=False, marker='.', alpha=0.7, edgecolor='none', ax=self.axes)
if show_marker:
markers = pltdata[pltdata['G'] == 'Both sig']
markers = markers.iloc[:min(len(markers), 10),:]
texts = []
for i in markers.index:
x, y, s = markers.loc[i, 'FC'], markers.loc[i, 'PV'], markers.loc[i, 'LB'].split(';')[0]
texts.append(self.axes.text(x, y, s, fontsize=3.5))
'''
adjust_text(texts, force_points=0.2, force_text=0.2,
expand_points=(1, 1), expand_text=(1, 1),
arrowprops=dict(arrowstyle="-", color='black', lw=0.5), ax=self.axes)
'''
self.axes.axvline(x = np.log2(fc_thres),ls = '--', color = 'black', lw=0.5)
self.axes.axvline(x = -np.log2(fc_thres),ls = '--', color = 'black', lw=0.5)
self.axes.axhline(y = -np.log10(pv_thres), ls = '--', color = 'black', lw=0.5)
self.axes.set_xlabel('Log FC', fontsize = 5)
self.axes.set_ylabel('-Log Adj P', fontsize = 5)
self.axes.tick_params(labelsize=4)
self.draw()
def PCAPlot(self, X, y):
pca = PCA(n_components=2)
X_s = StandardScaler().fit_transform(X.T)
X_r = pca.fit(X_s).transform(X_s)
label = np.unique(y)
target_names = ['group_{}'.format(i) for i in label]
self.axes.cla()
for i in range(len(label)):
self.axes.scatter(X_r[y == label[i], 0], X_r[y == label[i], 1], alpha=.8, lw=1, label=target_names[i], s=10)
self.axes.set_xlabel('PC 1', fontsize = 5)
self.axes.set_ylabel('PC 2', fontsize = 5)
self.axes.tick_params(labelsize=5)
self.draw()
def BarChart(self, X, y):
self.axes.cla()
cm = plt.cm.get_cmap('rainbow')
flierprops = dict(markersize = 2)
bplot = self.axes.boxplot(np.log2(X), patch_artist=True, flierprops=flierprops)
self.axes.set_xticklabels(list(X.columns), rotation = 90)
self.axes.set_xlabel('Sample', fontsize = 6)
self.axes.set_ylabel('Log2 Intensity', fontsize = 6)
colors = [cm(val / len(X.columns)) for val in range(len(X.columns))]
for patch, color in zip(bplot['boxes'], colors):
patch.set_facecolor(color)
self.draw()
def CorrHeatMap(self, X):
self.axes.cla()
X_copy = X.copy()
for i in range(X.shape[0]):
X_copy.iloc[i,:] /= np.nanmax(X_copy.iloc[i,:])
corr = np.round(np.corrcoef(X_copy.T), 2)
self.axes.imshow(corr, cmap="YlOrBr")
self.axes.set_xticks(np.arange(corr.shape[0]))
self.axes.set_yticks(np.arange(corr.shape[0]))
self.axes.set_xticklabels(list(X.columns), fontsize = 6, rotation = 90)
self.axes.set_yticklabels(list(X.columns), fontsize = 6)
for i in range(corr.shape[0]):
for j in range(corr.shape[0]):
self.axes.text(i, j, corr[i, j], ha="center", va="center", color="black", fontsize=3)
self.draw()
def PlotQCRSD(self, dataRSD):
self.axes.cla()
violinplot(x="Method", y="RSD", data=dataRSD, ax=self.axes)
self.draw()
def PlotQCBox(self, databox):
self.axes.cla()
boxplot(x="Method", y="Values", data=databox, ax=self.axes)
self.draw()
def TPP2D_Volcano(self, fdr_df, hits):
x = np.sign(fdr_df['slopeH1']) * np.sqrt(fdr_df['rssH0'] - fdr_df['rssH1'])
y = np.log2(fdr_df['F_statistic'] + 1)
l = fdr_df['clustername'].values
group = []
for ll in l:
if ll in hits['clustername'].values:
group.append('Hits')
else:
group.append('Others')
pltdata = pd.DataFrame({'x':x, 'y': y, 'l':l, 'G': group})
# sig = np.where(np.logical_and(np.abs(fc) >= np.log2(fc_thres), pv >= -np.log10(pv_thres)))[0]
self.axes.cla()
scatterplot(data=pltdata, x="x", y="y", hue="G", palette='tab10', legend=False, alpha=0.7, edgecolor='none', marker='.', ax=self.axes)
'''
markers = pltdata[pltdata['G'] == 'Hits']
markers = markers.iloc[:min(len(markers), 10),:]
texts = []
for i in markers.index:
x, y, s = markers.loc[i, 'x'], markers.loc[i, 'y'], markers.loc[i, 'l'].split(';')[0]
texts.append(self.axes.text(x, y, s, fontsize=3))
p = adjust_text(texts, force_points=0.2, force_text=0.2,
expand_points=(1, 1), expand_text=(1, 1),
arrowprops=dict(arrowstyle="-", color='black', lw=0.5), ax=self.axes)
'''
self.axes.set_xlabel('sign(k) sqrt(RSS0-RSS1)', fontsize = 5)
self.axes.set_ylabel('np.log2 (F_statistic + 1)', fontsize = 5)
self.axes.tick_params(labelsize=4)
self.draw()
def TPP2D_protHeatmap(self, data, ProteinAccession):
pltdata = data[data['clustername'] == ProteinAccession]
conc = np.unique(pltdata['conc'])
temp = np.unique(pltdata['temperature'])
img = np.zeros((len(conc), len(temp)))
for i in pltdata.index:
a = np.where(conc == pltdata.loc[i,'conc'])[0][0]
b = np.where(temp == pltdata.loc[i,'temperature'])[0][0]
img[a, b] = pltdata.loc[i,'rel_value']
img = pd.DataFrame(img)
img.index = conc
img.columns = temp
heatmap(img, ax=self.axes, cbar=False)
self.axes.tick_params(labelsize = 6)
self.axes.set_xlabel('temperture', fontsize = 6)
self.axes.set_ylabel('drug concentration', fontsize = 6)
self.draw()