-
Notifications
You must be signed in to change notification settings - Fork 256
/
chapter_6.html
7680 lines (7511 loc) · 477 KB
/
chapter_6.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="" xml:lang="">
<head>
<title>Lecture 6</title>
<meta charset="utf-8" />
<meta name="author" content="Hu Chuan-Peng (PhD)" />
<script src="libs/header-attrs-2.20/header-attrs.js"></script>
<link href="libs/remark-css-0.0.1/default.css" rel="stylesheet" />
<script src="libs/htmlwidgets-1.5.4/htmlwidgets.js"></script>
<link href="libs/datatables-css-0.0.0/datatables-crosstalk.css" rel="stylesheet" />
<script src="libs/datatables-binding-0.27/datatables.js"></script>
<script src="libs/jquery-3.6.0/jquery-3.6.0.min.js"></script>
<link href="libs/dt-core-1.12.1/css/jquery.dataTables.min.css" rel="stylesheet" />
<link href="libs/dt-core-1.12.1/css/jquery.dataTables.extra.css" rel="stylesheet" />
<script src="libs/dt-core-1.12.1/js/jquery.dataTables.min.js"></script>
<link href="libs/crosstalk-1.2.0/css/crosstalk.min.css" rel="stylesheet" />
<script src="libs/crosstalk-1.2.0/js/crosstalk.min.js"></script>
<link rel="stylesheet" href="css/Font_Style.css" type="text/css" />
</head>
<body>
<textarea id="source">
class: center, middle, inverse, title-slide
.title[
# Lecture 6
]
.subtitle[
## Data Preprocessing
]
.author[
### Hu Chuan-Peng (PhD)
]
.institute[
### Nanjing Normal University
]
.date[
### 2024/04/03
]
---
class: center, middle
<span style="font-size: 60px;">第六讲</span> <br>
<span style="font-size: 50px;">数据预处理</span> <br>
<br>
<br>
<span style="font-size: 30px;">胡传鹏</span> <br>
<span style="font-size: 30px;">2024/04/03</span> <br>
<br>
<br>
<br>
<br>
---
<h1 lang="en" style="font-size: 60px;">Contents</h1>
<br>
<br>
<span style="font-size: 45px;">6.1 Tidyverse</span></center> <br>
<br>
<span style="font-size: 45px;">6.2 问卷数据</span></center> <br>
<span style="font-size: 30px;">&emsp;6.2.1 研究问题 & 数据情况</span></center> <br>
<span style="font-size: 30px;">&emsp;6.2.2 操作步骤</span></center> <br>
<span style="font-size: 30px;">&emsp;6.2.3 小结</span></center> <br>
<br>
<span style="font-size: 45px;">6.3 反应时数据</span></center> <br>
<span style="font-size: 30px;">&emsp;6.3.1 研究问题 & 数据情况</span></center> <br>
<span style="font-size: 30px;">&emsp;6.3.2 操作步骤</span></center> <br>
<span style="font-size: 30px;">&emsp;6.3.3 小结</span></center> <br>
---
# <h1 lang="en">6.1 Tidyverse</h1>
<img src="./picture/chp6/workflow.png" width="85%" style="display: block; margin-left: auto; margin-right: auto;">
- 本课程的数据预处理将基于tidyverse( https://www.tidyverse.org/ ),它是目前最流行的预处理工具,是由8个多功能R包组成的连贯的系统<br>
- 核心包的具体功能与工作流如图所示
---
# <h1 lang="en">6.1 Tidyverse</h1>
<img src="./picture/chp6/cheatsheet.png" width="85%" style="display: block; margin-left: auto; margin-right: auto;">
- 可以通过搜索包的cheatsheet快速了解包的使用<br>
- 官方cheatsheet: https://rstudio.github.io/cheatsheets/
---
# <h1 lang="en">6.1 Tidyverse</h1>
- **优势:共享一个底层设计哲学、语法和数据结构,具有高度的一致性**<br>
<br>
- **"整洁数据(tidy)"**:每行代表一个观察值,每列代表一个变量的值<br>
- **函数的第一个参数总是一个数据框**<br>
- **管道操作符**:连接独立代码,省去中间变量,流水线<br>
最常用的管道操作符为**%>%**,它将一个函数的输出作为下一个函数的输入<br>
<br>
假设需找到`data`中`age`大于`30`的所有行,并排序,代码如下:<br>
```r
filtered_data <- filter(data, age > 30)
filtered_sorted_data <- arrange(filtered_data, age)
```
<br>
使用管道操作符后,代码变为:<br>
```r
filtered_sorted_data <- data %>%
filter(age > 30) %>%
arrange(age)
```
---
# <h1 lang="en">6.1 Tidyverse</h1>
<br><img src="./picture/chp6/pipe.png" width="100%" style="display: block; margin-left: auto; margin-right: auto;">
- tidyverse常见的管道符如表所示,依赖于`magrittr`包<br>
- R 4.1.0 以上版本加入了原生管道操作符`|>`<br>
---
# <h1 lang="en">6.2 问卷数据</h1>
<span style="font-size: 30px;"> 6.2.1 研究问题 & 数据情况</span></center> <br>
<br>
- 课程接下来会以重复[IJzerman et al (2018)](https://doi.org/10.1525/collabra.165)的分析进行问卷数据分析的示例<br>
<br>
- **研究问题**:社交复杂度(CSI)是否影响核心体温(CBT),特别是在离赤道比较远的(低温)地区(DEQ)下<br>
<br>
- **研究假设**:<br>
对于在低温环境中的人来说,(在众多的变量中)社交网络复杂度能够影响个体的核心体温<br>
这一效应受个体的恋爱状态(romantic)调节<br>
<br>
- **研究方法**:路径模型,探索性监督机器学习<br>
---
# <h1 lang="en">6.2 问卷数据</h1>
<span style="font-size: 30px;">6.2.1 研究问题 & 数据情况</span></center> <br>
- **研究结果**:<br>
<img src="./picture/chp6/pr1.png" width="65%" style="display: block; margin-left: auto; margin-right: auto;">
---
# <h1 lang="en">6.2 问卷数据</h1>
<span style="font-size: 30px;">6.2.1 研究问题 & 数据情况</span></center> <br>
<br>
- **研究结果**:<br>
<img src="./picture/chp6/pr2.png" width="100%" style="display: block; margin-left: auto; margin-right: auto;">
---
# <h1 lang="en">6.2 问卷数据</h1>
<span style="font-size: 30px;">6.2.1 研究问题 & 数据情况</span></center><br>
- 数据情况(Hu et al., 2019):<br>
通过data/penguin文件夹下的penguin_full_codebook可以查看详细情况<br>
<img src="./picture/chp6/penguin.png" width="70%" style="display: block; margin-left: auto; margin-right: auto;">
---
# <h1 lang="en">6.2 问卷数据</h1>
<span style="font-size: 30px;">6.2.1 研究问题 & 数据情况</span></center><br>
- 研究核心变量:<br>
CBT: 核心体温,测量两次,变量为Temperature_t1, Temperature_t2<br>
CSI: 变量为socialdiversity<br>
Site: 数据源站点<br>
DEQ: 距赤道的距离,变量为DEQ<br>
romantic: 是否处于恋爱关系,1 = "yes", 2 = "no"<br>
ALEX: 述情障碍,探索性监督机器学习需要的变量之一,5点量表,变量为ALEX1-16,第4, 12, 14, 16题反向计分
---
# <h1 lang="en">6.2 问卷数据</h1>
<span style="font-size: 30px;">6.2.1 研究问题 & 数据情况</span></center><br>
```r
# 导入数据
df1 <- bruceR::import(here::here('data', 'penguin', 'penguin_rawdata.csv'))
```
<div id="htmlwidget-4bec50a19b24efb99169" style="width:100%;height:auto;" class="datatables html-widget"></div>
<script type="application/json" data-for="htmlwidget-4bec50a19b24efb99169">{"x":{"filter":"none","vertical":false,"fillContainer":true,"data":[["1","2","3","4","5","6"],["Tsinghua","Oxford","Oxford","Oxford","Chile","Bamberg"],[1922,1940,1945,1948,1948,1951],[2,1,1,2,2,1],[6,7,6,7,6,7],[2,1,1,1,1,1],[3,4,3,2,4,4],[2,2,2,2,2,2],[1,1,1,1,1,1],[0,0,0,3,0,0],[0,0,8,0,0,0],[2,2,2,2,2,2],[0,null,null,null,1,null],[36.75,35.4,35.1,35.95,36.08333333,35.6],[36.8,34.2,35,36.1,35.72222222,35.3],[36.7,36.6,35.2,35.8,36.44444444,35.9],[26.88780212,51.75,51.75,51.75,42.07719421,51.65660095],[64,74,89,88,79,59],[12,2.777777778,-1.666666667,-2.222222222,1,2],[7,5,5,5,2,1],[3,1,1,1,1,1],[2,3,1,1,5,1],[1,8,6,3,4,3],[0,4,4,3,4,3],[1,1,2,1,1,1],[1,null,2,null,1,null],[5,2,1,1,1,1],[0,2,null,null,null,null],[6,1,1,4,6,7],[2,null,null,3,4,2],[7,8,3,1,7,7],[3,5,2,1,5,2],[1,2,1,2,1,2],[1,1,null,8,null,1],[2,1,1,1,1,1],[5,null,null,null,null,null],[3,2,1,1,1,1],[1,1,null,null,null,null],[2,8,null,null,null,null],[3,1,4,3,4,2],[2,1,1,2,1,2],[1,null,null,8,null,8],[1,2,1,1,1,2],["ʮ վ","Pensioners",null,null,null,"Telefonseelsorge"],[null,"Men/women with foreign spouses not in UK",null,null,null,"Seniorenheim"],[null,null,null,null,null,null],[null,null,null,null,null,null],[null,null,null,null,null,null],[3,25,null,null,null,7],[null,30,null,null,null,2],[null,null,null,null,null,null],[null,null,null,null,null,null],[null,null,null,null,null,null],[3,3,4,3,2,4],[4,5,3,2,2,4],[4,2,4,4,3,3],[4,3,2,4,4,2],[4,2,2,2,4,2],[4,2,2,3,4,2],[2,5,3,4,3,2],[2,3,2,2,1,4],[4,4,3,2,5,3],[4,5,5,4,4,4],[4,5,3,4,4,4],[4,3,3,4,4,5],[4,4,4,2,4,2],[2,1,3,2,2,2],[4,1,3,2,2,3],[5,1,3,3,2,3],[3,1,2,2,3,3],[3,1,2,2,2,1],[1,1,2,1,1,2],[4,1,2,3,2,2],[2,1,2,2,2,3],[2,1,1,2,2,3],[3,1,2,2,3,2],[1,1,3,3,3,3],[5,5,3,3,3,2],[2,2,1,3,2,1],[1,1,2,3,2,2],[2,1,2,1,2,2],[3,1,2,3,2,4],[2,1,2,2,2,3],[3,1,1,4,2,4],[3,1,2,1,2,2],[2,1,1,2,1,1],[4,1,2,2,2,2],[4,1,2,4,4,3],["4","1","2","4","2","3"],[4,3,1,4,3,1],[4,1,2,1,3,2],[2,1,1,1,3,1],[4,1,1,2,3,1],[2,1,1,1,3,1],[2,1,1,1,1,1],[2,1,1,1,3,1],[2,1,2,1,3,1],[5,1,2,1,3,1],[1,1,1,1,1,1],[2,1,1,1,1,1],[4,1,5,1,2,1],[2,1,3,1,2,2],[2,1,3,1,4,1],[2,1,2,1,2,1],[5,1,4,2,5,1],[2,1,3,2,6,3],[2,1,2,2,1,1],[2,1,2,1,1,1],[5,1,3,7,4,1],[2,1,4,1,2,2],[2,1,5,1,2,1],[2,1,4,2,5,6],[4,1,2,1,4,5],[2,4,2,1,1,1],[2,1,2,1,1,1],[5,1,5,2,2,1],[5,1,3,4,2,2],[2,1,2,7,5,1],[5,7,2,1,2,1],[2,1,2,1,2,2],[6,3,2,1,2,7],[5,1,2,7,2,2],[4,1,2,7,2,1],[5,1,1,3,1,1],[5,1,1,2,2,1],[2,1,2,2,2,2],[5,1,3,6,4,2],[2,4,2,1,1,2],[3,4,5,1,2,6],[5,4,2,1,2,2],[2,2,3,1,2,2],[5,1,2,1,1,1],[4,4,4,1,6,7],[6,4,4,2,5,6],[6,1,3,1,1,3],[2,1,6,2,5,5],[4,5,5,5,5,5],[4,3,3,5,5,5],[4,3,4,5,5,5],[4,3,4,5,5,4],[3,3,3,5,5,2],[3,1,4,4,3,5],[2,1,4,3,2,4],[2,1,5,4,4,5],[3,1,4,4,3,4],[3,6,6,3,3,7],[2,5,5,6,4,3],[4,5,5,6,5,5],[6,2,5,5,4,4],[7,2,5,4,3,2],[6,5,5,3,3,3],[6,5,5,2,3,3],[2,1,2,3,1,1],[2,1,2,4,1,2],[2,1,4,1,1,1],[2,1,2,2,1,2],[2,1,2,4,1,1],[2,1,2,2,1,3],[2,1,2,3,2,4],[2,1,2,4,1,2],[2,1,2,2,2,4],[1,1,1,1,1,2],[2,1,2,2,1,2],[2,2,3,2,2,4],[2,3,2,2,2,4],[2,2,2,2,2,1],[2,3,2,4,1,1],[2,2,2,2,4,1],[2,1,5,4,4,4],[2,1,5,4,5,7],[4,1,5,4,5,6],[2,1,2,4,3,1],[2,1,3,5,3,6],[2,1,2,1,2,3],[2,1,1,2,1,7],[2,5,1,1,2,5],[4,1,3,4,4,4],[5,3,2,4,4,5],[3,4,5,5,3,3],[1,5,4,1,3,1],[2,2,3,2,4,2],[2,3,3,2,1,1],[4,2,5,2,3,5],[3,4,5,4,3,2],[4,1,3,5,4,5],[2,1,3,2,2,4],[1,5,1,2,2,1],[4,5,3,4,4,5],[2,1,2,5,3,5],[3,1,4,2,4,1],[2,2,1,1,3,1],[2,3,4,2,5,1],[4,1,3,5,1,4],[3,3,4,2,4,5],[2,3,4,4,3,4],[4,4,4,5,4,4],[4,4,5,5,2,5],[4,4,3,2,4,4],[2,3,5,4,4,4],[3,1,4,4,4,4],[4,5,4,5,4,2],[4,1,1,2,1,1],[3,3,4,4,3,3],[4,3,4,5,4,4],[4,1,1,4,1,1],[3,1,1,1,1,1],[2,1,5,4,1,5],[4,1,2,2,1,4],[1,2,3,3,3,1],[2,1,4,5,3,4],[4,5,5,3,2,4],[2,3,4,4,2,2],[2,5,5,1,3,4],[1,1,3,2,2,4],[5,3,2,4,3,1],[3,1,3,2,3,1],[4,5,4,4,4,3],[3,1,1,2,2,1],[2,1,2,2,3,1],[2,5,2,2,2,1],[4,3,3,4,3,3],[2,3,2,2,4,4],[3,1,2,1,4,2],[2,1,3,3,3,1],[4,1,2,4,4,1],[2,1,4,4,3,1],[2,3,1,1,2,1],[3,1,1,4,4,1],[2,1,1,5,3,1],[2,1,2,4,3,1],[4,5,4,5,3,3],[2,1,1,1,1,1],[8,6,5,7,5,7]],"container":"<table class=\"display fill-container\">\n <thead>\n <tr>\n <th> <\/th>\n <th>Site<\/th>\n <th>age<\/th>\n <th>sex<\/th>\n <th>monogamous<\/th>\n <th>romantic<\/th>\n <th>health<\/th>\n <th>exercise<\/th>\n <th>eatdrink<\/th>\n <th>gluctot<\/th>\n <th>artgluctot<\/th>\n <th>smoke<\/th>\n <th>cigs<\/th>\n <th>avgtemp<\/th>\n <th>Temperature_t1<\/th>\n <th>Temperature_t2<\/th>\n <th>DEQ<\/th>\n <th>AvgHumidity<\/th>\n <th>mintemp<\/th>\n <th>language<\/th>\n <th>langfamily<\/th>\n <th>SNI1<\/th>\n <th>SNI2<\/th>\n <th>SNI3<\/th>\n <th>SNI4<\/th>\n <th>SNI5<\/th>\n <th>SNI6<\/th>\n <th>SNI7<\/th>\n <th>SNI8<\/th>\n <th>SNI9<\/th>\n <th>SNI10<\/th>\n <th>SNI11<\/th>\n <th>SNI12<\/th>\n <th>SNI13<\/th>\n <th>SNI14<\/th>\n <th>SNI15<\/th>\n <th>SNI16<\/th>\n <th>SNI17<\/th>\n <th>SNI18<\/th>\n <th>SNI19<\/th>\n <th>SNI20<\/th>\n <th>SNI21<\/th>\n <th>SNI22<\/th>\n <th>SNI23<\/th>\n <th>SNI24<\/th>\n <th>SNI25<\/th>\n <th>SNI26<\/th>\n <th>SNI27<\/th>\n <th>SNI28<\/th>\n <th>SNI29<\/th>\n <th>SNI30<\/th>\n <th>SNI31<\/th>\n <th>SNI32<\/th>\n <th>scontrol1<\/th>\n <th>scontrol2<\/th>\n <th>scontrol3<\/th>\n <th>scontrol4<\/th>\n <th>scontrol5<\/th>\n <th>scontrol6<\/th>\n <th>scontrol7<\/th>\n <th>scontrol8<\/th>\n <th>scontrol9<\/th>\n <th>scontrol10<\/th>\n <th>scontrol11<\/th>\n <th>scontrol12<\/th>\n <th>scontrol13<\/th>\n <th>stress1<\/th>\n <th>stress2<\/th>\n <th>stress3<\/th>\n <th>stress4<\/th>\n <th>stress5<\/th>\n <th>stress6<\/th>\n <th>stress7<\/th>\n <th>stress8<\/th>\n <th>stress9<\/th>\n <th>stress10<\/th>\n <th>stress11<\/th>\n <th>stress12<\/th>\n <th>stress13<\/th>\n <th>stress14<\/th>\n <th>phone1<\/th>\n <th>phone2<\/th>\n <th>phone3<\/th>\n <th>phone4<\/th>\n <th>phone5<\/th>\n <th>phone6<\/th>\n <th>phone7<\/th>\n <th>phone8<\/th>\n <th>phone9<\/th>\n <th>onlineid1<\/th>\n <th>onlineid2<\/th>\n <th>onlineid3<\/th>\n <th>onlineid4<\/th>\n <th>onlineid5<\/th>\n <th>onlineid6<\/th>\n <th>onlineid7<\/th>\n <th>onlineid8<\/th>\n <th>onlineid9<\/th>\n <th>onlineid10<\/th>\n <th>onlineide11<\/th>\n <th>ECR1<\/th>\n <th>ECR2<\/th>\n <th>ECR3<\/th>\n <th>ECR4<\/th>\n <th>ECR5<\/th>\n <th>ECR6<\/th>\n <th>ECR7<\/th>\n <th>ECR8<\/th>\n <th>ECR9<\/th>\n <th>ECR10<\/th>\n <th>ECR11<\/th>\n <th>ECR12<\/th>\n <th>ECR13<\/th>\n <th>ECR14<\/th>\n <th>ECR15<\/th>\n <th>ECR16<\/th>\n <th>ECR17<\/th>\n <th>ECR18<\/th>\n <th>ECR19<\/th>\n <th>ECR20<\/th>\n <th>ECR21<\/th>\n <th>ECR22<\/th>\n <th>ECR23<\/th>\n <th>ECR24<\/th>\n <th>ECR25<\/th>\n <th>ECR26<\/th>\n <th>ECR27<\/th>\n <th>ECR28<\/th>\n <th>ECR29<\/th>\n <th>ECR30<\/th>\n <th>ECR31<\/th>\n <th>ECR32<\/th>\n <th>ECR33<\/th>\n <th>ECR34<\/th>\n <th>ECR35<\/th>\n <th>ECR36<\/th>\n <th>HOME1<\/th>\n <th>HOME2<\/th>\n <th>HOME3<\/th>\n <th>HOME4<\/th>\n <th>HOME5<\/th>\n <th>HOME6<\/th>\n <th>HOME7<\/th>\n <th>HOME8<\/th>\n <th>HOME9<\/th>\n <th>SNS1<\/th>\n <th>SNS2<\/th>\n <th>SNS3<\/th>\n <th>SNS4<\/th>\n <th>SNS5<\/th>\n <th>SNS6<\/th>\n <th>SNS7<\/th>\n <th>ALEX1<\/th>\n <th>ALEX2<\/th>\n <th>ALEX3<\/th>\n <th>ALEX4<\/th>\n <th>ALEX5<\/th>\n <th>ALEX6<\/th>\n <th>ALEX7<\/th>\n <th>ALEX8<\/th>\n <th>ALEX9<\/th>\n <th>ALEX10<\/th>\n <th>ALEX11<\/th>\n <th>ALEX12<\/th>\n <th>ALEX13<\/th>\n <th>ALEX14<\/th>\n <th>ALEX15<\/th>\n <th>ALEX16<\/th>\n <th>KAMF1<\/th>\n <th>KAMF2<\/th>\n <th>KAMF3<\/th>\n <th>KAMF4<\/th>\n <th>KAMF5<\/th>\n <th>KAMF6<\/th>\n <th>KAMF7<\/th>\n <th>STRAQ_1<\/th>\n <th>STRAQ_2<\/th>\n <th>STRAQ_3<\/th>\n <th>STRAQ_4<\/th>\n <th>STRAQ_5<\/th>\n <th>STRAQ_6<\/th>\n <th>STRAQ_7<\/th>\n <th>STRAQ_8<\/th>\n <th>STRAQ_9<\/th>\n <th>STRAQ_10<\/th>\n <th>STRAQ_11<\/th>\n <th>STRAQ_12<\/th>\n <th>STRAQ_13<\/th>\n <th>STRAQ_14<\/th>\n <th>STRAQ_15<\/th>\n <th>STRAQ_16<\/th>\n <th>STRAQ_17<\/th>\n <th>STRAQ_18<\/th>\n <th>STRAQ_19<\/th>\n <th>STRAQ_20<\/th>\n <th>STRAQ_21<\/th>\n <th>STRAQ_22<\/th>\n <th>STRAQ_23<\/th>\n <th>STRAQ_24<\/th>\n <th>STRAQ_25<\/th>\n <th>STRAQ_26<\/th>\n <th>STRAQ_27<\/th>\n <th>STRAQ_28<\/th>\n <th>STRAQ_29<\/th>\n <th>STRAQ_30<\/th>\n <th>STRAQ_31<\/th>\n <th>STRAQ_32<\/th>\n <th>STRAQ_33<\/th>\n <th>STRAQ_34<\/th>\n <th>STRAQ_35<\/th>\n <th>STRAQ_36<\/th>\n <th>STRAQ_37<\/th>\n <th>STRAQ_38<\/th>\n <th>STRAQ_39<\/th>\n <th>STRAQ_40<\/th>\n <th>STRAQ_41<\/th>\n <th>STRAQ_42<\/th>\n <th>STRAQ_43<\/th>\n <th>STRAQ_44<\/th>\n <th>STRAQ_45<\/th>\n <th>STRAQ_46<\/th>\n <th>STRAQ_47<\/th>\n <th>STRAQ_48<\/th>\n <th>STRAQ_49<\/th>\n <th>STRAQ_50<\/th>\n <th>STRAQ_51<\/th>\n <th>STRAQ_52<\/th>\n <th>STRAQ_53<\/th>\n <th>STRAQ_54<\/th>\n <th>STRAQ_55<\/th>\n <th>STRAQ_56<\/th>\n <th>STRAQ_57<\/th>\n <th>socialdiversity<\/th>\n <\/tr>\n <\/thead>\n<\/table>","options":{"pageLength":4,"columnDefs":[{"className":"dt-right","targets":[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232]},{"orderable":false,"targets":0}],"order":[],"autoWidth":false,"orderClasses":false,"lengthMenu":[4,10,25,50,100]}},"evals":[],"jsHooks":[]}</script>
---
# <h1 lang="en">6.2 问卷数据</h1>
<span style="font-size: 30px;">6.2.1 研究问题 & 数据情况</span></center><br>
```r
#查看变量名(列名)
colnames(df1)
```
```
## [1] "Site" "age" "sex" "monogamous"
## [5] "romantic" "health" "exercise" "eatdrink"
## [9] "gluctot" "artgluctot" "smoke" "cigs"
## [13] "avgtemp" "Temperature_t1" "Temperature_t2" "DEQ"
## [17] "AvgHumidity" "mintemp" "language" "langfamily"
## [21] "SNI1" "SNI2" "SNI3" "SNI4"
## [25] "SNI5" "SNI6" "SNI7" "SNI8"
## [29] "SNI9" "SNI10" "SNI11" "SNI12"
## [33] "SNI13" "SNI14" "SNI15" "SNI16"
## [37] "SNI17" "SNI18" "SNI19" "SNI20"
## [41] "SNI21" "SNI22" "SNI23" "SNI24"
## [45] "SNI25" "SNI26" "SNI27" "SNI28"
## [49] "SNI29" "SNI30" "SNI31" "SNI32"
## [53] "scontrol1" "scontrol2" "scontrol3" "scontrol4"
## [57] "scontrol5" "scontrol6" "scontrol7" "scontrol8"
## [61] "scontrol9" "scontrol10" "scontrol11" "scontrol12"
## [65] "scontrol13" "stress1" "stress2" "stress3"
## [69] "stress4" "stress5" "stress6" "stress7"
## [73] "stress8" "stress9" "stress10" "stress11"
## [77] "stress12" "stress13" "stress14" "phone1"
## [81] "phone2" "phone3" "phone4" "phone5"
## [85] "phone6" "phone7" "phone8" "phone9"
## [89] "onlineid1" "onlineid2" "onlineid3" "onlineid4"
## [93] "onlineid5" "onlineid6" "onlineid7" "onlineid8"
## [97] "onlineid9" "onlineid10" "onlineide11" "ECR1"
## [101] "ECR2" "ECR3" "ECR4" "ECR5"
## [105] "ECR6" "ECR7" "ECR8" "ECR9"
## [109] "ECR10" "ECR11" "ECR12" "ECR13"
## [113] "ECR14" "ECR15" "ECR16" "ECR17"
## [117] "ECR18" "ECR19" "ECR20" "ECR21"
## [121] "ECR22" "ECR23" "ECR24" "ECR25"
## [125] "ECR26" "ECR27" "ECR28" "ECR29"
## [129] "ECR30" "ECR31" "ECR32" "ECR33"
## [133] "ECR34" "ECR35" "ECR36" "HOME1"
## [137] "HOME2" "HOME3" "HOME4" "HOME5"
## [141] "HOME6" "HOME7" "HOME8" "HOME9"
## [145] "SNS1" "SNS2" "SNS3" "SNS4"
## [149] "SNS5" "SNS6" "SNS7" "ALEX1"
## [153] "ALEX2" "ALEX3" "ALEX4" "ALEX5"
## [157] "ALEX6" "ALEX7" "ALEX8" "ALEX9"
## [161] "ALEX10" "ALEX11" "ALEX12" "ALEX13"
## [165] "ALEX14" "ALEX15" "ALEX16" "KAMF1"
## [169] "KAMF2" "KAMF3" "KAMF4" "KAMF5"
## [173] "KAMF6" "KAMF7" "STRAQ_1" "STRAQ_2"
## [177] "STRAQ_3" "STRAQ_4" "STRAQ_5" "STRAQ_6"
## [181] "STRAQ_7" "STRAQ_8" "STRAQ_9" "STRAQ_10"
## [185] "STRAQ_11" "STRAQ_12" "STRAQ_13" "STRAQ_14"
## [189] "STRAQ_15" "STRAQ_16" "STRAQ_17" "STRAQ_18"
## [193] "STRAQ_19" "STRAQ_20" "STRAQ_21" "STRAQ_22"
## [197] "STRAQ_23" "STRAQ_24" "STRAQ_25" "STRAQ_26"
## [201] "STRAQ_27" "STRAQ_28" "STRAQ_29" "STRAQ_30"
## [205] "STRAQ_31" "STRAQ_32" "STRAQ_33" "STRAQ_34"
## [209] "STRAQ_35" "STRAQ_36" "STRAQ_37" "STRAQ_38"
## [213] "STRAQ_39" "STRAQ_40" "STRAQ_41" "STRAQ_42"
## [217] "STRAQ_43" "STRAQ_44" "STRAQ_45" "STRAQ_46"
## [221] "STRAQ_47" "STRAQ_48" "STRAQ_49" "STRAQ_50"
## [225] "STRAQ_51" "STRAQ_52" "STRAQ_53" "STRAQ_54"
## [229] "STRAQ_55" "STRAQ_56" "STRAQ_57" "socialdiversity"
```
---
# <h1 lang="en">6.2 问卷数据</h1>
<span style="font-size: 30px;">6.2.2 操作步骤</span></center><br>
- 数据预处理目标:计算感兴趣的变量,按照Site查看被试的平均体温<br>
Step1: 选择变量[select]<br>
Step2: 检查数据类型[glimpse, as族函数]<br>
Step3: 处理缺失值[filter, is.na]<br>
Step4: 计算所需变量[mutate, case when]<br>
Step5: 分组求统计量 [group_by, summarise]
```r
# 不要忘记加载包
library(tidyverse)
```
```
## Warning: 程辑包'tidyverse'是用R版本4.3.3 来建造的
```
```
## Warning: 程辑包'ggplot2'是用R版本4.3.3 来建造的
```
---
# <h1 lang="en">6.2 问卷数据</h1>
<span style="font-size: 30px;">6.2.2 操作步骤 | Step1: 选择变量[select]</span></center><br>
```r
# 加载包后函数前不需要注明包,此处只是为了提示函数属于哪个包
# 选择我们需要的变量:Temperature_t1, Temperature_t2, SNI28-32, DEQ, romantic, ALEX1-16
df1 <- dplyr::select(df1,
Temperature_t1, Temperature_t2,
socialdiversity,
Site, DEQ,
romantic,
ALEX1:ALEX16)
```
<br>
- select()函数会按照提供的参数顺序选择列<br>
- 可以使用列名、范围(例如 starts_with()、ends_with()、contains()、matches() 等),或者使用 everything() 来选择所有列<br>
- 注意需要将函数结果赋值给一个新的变量/原始变量完成保存
---
# <h1 lang="en">6.2 问卷数据</h1>
<span style="font-size: 30px;">6.2.2 操作步骤 | Step2: 检查数据类型[summary]</span></center><br>
```r
# 检查变量的数据类型
base::summary(df1)
```
```
## Temperature_t1 Temperature_t2 socialdiversity Site
## Min. :33.20 Min. :33.90 Min. : 0.000 Length:1517
## 1st Qu.:36.00 1st Qu.:36.28 1st Qu.: 5.000 Class :character
## Median :36.40 Median :36.50 Median : 6.000 Mode :character
## Mean :36.28 Mean :36.50 Mean : 6.599
## 3rd Qu.:36.70 3rd Qu.:36.78 3rd Qu.: 8.000
## Max. :39.40 Max. :39.30 Max. :12.000
## NA's :30 NA's :9
## DEQ romantic ALEX1 ALEX2
## Min. : 1.293 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:34.433 1st Qu.:1.000 1st Qu.:2.000 1st Qu.:2.000
## Median :39.912 Median :1.000 Median :2.000 Median :3.000
## Mean :39.833 Mean :1.443 Mean :2.509 Mean :2.762
## 3rd Qu.:51.317 3rd Qu.:2.000 3rd Qu.:3.000 3rd Qu.:4.000
## Max. :60.391 Max. :2.000 Max. :7.000 Max. :7.000
## NA's :88 NA's :32 NA's :15 NA's :15
## ALEX3 ALEX4 ALEX5 ALEX6 ALEX7
## Min. :1.00 Min. :1.000 Min. :1.000 Min. :1.00 Min. :1.000
## 1st Qu.:1.00 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:2.00 1st Qu.:2.000
## Median :2.00 Median :2.000 Median :2.000 Median :2.00 Median :3.000
## Mean :2.03 Mean :2.656 Mean :2.472 Mean :2.48 Mean :2.892
## 3rd Qu.:3.00 3rd Qu.:3.000 3rd Qu.:3.000 3rd Qu.:3.00 3rd Qu.:4.000
## Max. :5.00 Max. :7.000 Max. :7.000 Max. :7.00 Max. :7.000
## NA's :15 NA's :15 NA's :15 NA's :15 NA's :15
## ALEX8 ALEX9 ALEX10 ALEX11 ALEX12
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.0
## 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:2.0
## Median :2.000 Median :2.000 Median :2.000 Median :2.000 Median :2.0
## Mean :2.563 Mean :2.516 Mean :2.405 Mean :2.289 Mean :2.2
## 3rd Qu.:3.000 3rd Qu.:3.000 3rd Qu.:3.000 3rd Qu.:3.000 3rd Qu.:3.0
## Max. :7.000 Max. :5.000 Max. :7.000 Max. :7.000 Max. :6.0
## NA's :15 NA's :15 NA's :15 NA's :15 NA's :15
## ALEX13 ALEX14 ALEX15 ALEX16
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:2.000
## Median :2.000 Median :2.000 Median :3.000 Median :2.000
## Mean :2.385 Mean :2.065 Mean :2.841 Mean :2.169
## 3rd Qu.:3.000 3rd Qu.:2.000 3rd Qu.:4.000 3rd Qu.:3.000
## Max. :6.000 Max. :6.000 Max. :7.000 Max. :7.000
## NA's :15 NA's :15 NA's :15 NA's :15
```
---
# <h1 lang="en">6.2 问卷数据</h1>
<span style="font-size: 30px;">6.2.2 操作步骤 | Step2: 检查数据类型[as族函数]</span></center><br>
```r
# 转换数据类型
# 这里数据类型是正确的,只是示例
df1 <- dplyr::mutate(df1,
Temperature_t1_new = as.numeric(Temperature_t1),
Temperature_t2 = as.numeric(Temperature_t2))
```
<br>
- `mutate()`函数常用于创建新的变量或修改现有变量<br>
- 存在多种变式,如`mutate_at()`通过列名、位置或者列的类型进行选择,`mutate_if()`对数据框中满足条件的列应用指定的函数<br>
- `mutate()`内使用函数时,同样需要注意缺失值的问题<br>
- 注意`mutate()`进行转换之后需要进行核查:是否符合预期<br>
- 注意需要将函数结果赋值给一个新的变量/原始变量完成保存
---
# <h1 lang="en">6.2 问卷数据</h1>
<span style="font-size: 30px;">6.2.2 操作步骤 | Step3: 处理缺失值[filter, is.na]</span></center><br>
```r
# 按照Temperature, DEQ处理缺失值
df1 <- filter(df1, !is.na(Temperature_t1)
& !is.na(Temperature_t2) & !is.na(DEQ))
```
<br>
- filter()函数用于从数据框中筛选**行**(观测值),可以通过逻辑运算符组合多个条件<br>
- 运算逻辑:遍历每一行,将给定的条件应用于该行,条件为真则保留,保留的行被组成一个新的数据框作为函数的返回值<br>
- 注意需要将函数结果赋值给一个新的变量/原始变量完成保存
---
# <h1 lang="en">6.2 问卷数据</h1>
<span style="font-size: 30px;">6.2.2 操作步骤 | Step4: 计算所需变量[mutate]</span></center><br>
```r
# 计算每个被试两次核心温度的均值,保存为Temperature
df1 <- dplyr::mutate(df1,
Temperature = rowMeans(select(df1, starts_with("Temperature"))))
```
- `mean()`函数用于计算向量或数组的平均值,`colMeans()`函数用于计算矩阵或数据框的每一列的平均值,`rowMeans()`函数用于计算矩阵或数据框的每一行的平均值<br>
- 数据类型需为numeric<br>
- `starts_with()`用于在数据框中选择列名以特定字符串开头的列
---
# <h1 lang="en">6.2 问卷数据</h1>
<span style="font-size: 30px;">6.2.2 操作步骤 | Step4: 计算所需变量[mutate, case when]</span></center><br>
```r
# 将4, 12, 14, 16题反向计分,计算ALEX,保存为ALEX
df1 <- mutate(df1,
ALEX4 = case_when(
TRUE ~ 6 - ALEX4 # 反向计分:6减去原始值
),
ALEX12 = case_when(TRUE ~ 6 - ALEX12),
ALEX14 = case_when(TRUE ~ 6 - ALEX14),
ALEX16 = case_when(TRUE ~ 6 - ALEX16)
)
#也可以写成 case_when(ALEX4 == '1' ~ '5',ALEX4 == '2' ~ '4', ALEX4 == '3' ~ '3', ALEX4 == '4' ~ '2', ALEX4 == '5' ~ '1',TRUE ~ as.character(ALEX4))
```
- `case_when()`函数是一个强大的条件判断函数,通常用于根据不同的条件生成新的变量或对现有变量进行转换<br>
- 运算逻辑:逐行评估每个条件,并根据条件的结果来确定新值,若条件为真,则用‘~’后的值替换原始值<br>
- 有多个条件时,按照条件的顺序逐个进行判断,一旦有条件满足,则返回对应的值并停止继续判断其他条件<br>
- 使用 `TRUE ~` 或者 `TRUE ~ NA`处理未匹配到任何条件的情况,这样可以确保即使所有条件都不满足时,函数也会返回一个默认值,避免产生错误
---
# <h1 lang="en">6.2 问卷数据</h1>
<span style="font-size: 30px;">6.2.2 操作步骤 | Step4: 计算所需变量[mutate, case when]</span></center><br>
- **前后对比**:<br>
<img src="./picture/chp6/contrast.png" width="100%" style="display: block; margin-left: auto; margin-right: auto;">
---
# <h1 lang="en">6.2 问卷数据</h1>
<span style="font-size: 30px;">6.2.2 操作步骤 | Step4: 计算所需变量[mutate, case when]</span></center><br>
- 使用case when()要确保条件中使用的值与变量的数据类型匹配<br>
```r
# age为num
case_when(
age < 18 ~ "Child",
age >= 18 & age < 65 ~ "Adult",
age >= 65 ~ "Senior"
)
# age为chr
case_when(
age < "18" ~ "Child",
age >= "18" & age < "65" ~ "Adult",
age >= "65" ~ "Senior"
)
```
---
# <h1 lang="en">6.2 问卷数据</h1>
<span style="font-size: 30px;">6.2.2 操作步骤 | Step4: 计算所需变量[mutate]</span></center><br>
```r
# 计算ALEX
df1 <- mutate(df1,
ALEX = rowSums(select(df1, starts_with("ALEX"))))
# 查看数据
df1
```
```
## Temperature_t1 Temperature_t2 socialdiversity Site DEQ
## 1 36.80000 36.70000 8 Tsinghua 26.887802
## 2 34.20000 36.60000 6 Oxford 51.750000
## 3 35.00000 35.20000 5 Oxford 51.750000
## 4 36.10000 35.80000 7 Oxford 51.750000
## 5 35.72222 36.44444 5 Chile 42.077194
## 6 35.30000 35.90000 7 Bamberg 51.656601
## 7 34.80000 36.00000 4 Oxford 51.750000
## 8 35.10000 36.50000 5 Oxford 51.750000
## 9 35.30000 36.40000 5 Oxford 51.750000
## 10 35.10000 36.10000 7 Oslo 59.912704
## 11 36.20000 35.50000 7 Chile 33.449997
## 12 35.60000 36.40000 4 Oxford 51.750000
## 13 36.50000 36.40000 7 Oxford 51.750000
## 14 36.30000 36.30000 6 Kassel 48.401505
## 15 36.20000 36.00000 10 Chile 33.449997
## 16 35.90000 36.40000 3 Oxford 51.750000
## 17 35.50000 35.50000 5 Chile 33.449997
## 18 36.50000 36.70000 5 Oxford 51.750000
## 19 36.60000 36.60000 9 Chile 33.449997
## 20 36.70000 36.90000 5 Bamberg 51.266693
## 21 35.00000 36.50000 5 Oxford 51.750000
## 22 35.80000 36.20000 8 Zurich 47.166107
## 23 36.30000 36.10000 4 Bamberg 49.897202
## 24 36.50000 36.00000 9 Bamberg 50.516693
## 25 36.60000 36.60000 7 Kassel 48.766693
## 26 38.40000 38.40000 6 Bamberg 50.157394
## 27 35.80000 36.30000 5 Bamberg 51.175995
## 28 35.80000 36.50000 5 Oxford 51.750000
## 29 36.30000 36.70000 5 Bamberg 52.516693
## 30 36.60000 36.40000 8 Portugal 38.716705
## 31 37.00000 36.50000 10 Poland 52.593094
## 32 36.30000 36.60000 5 Oxford 51.750000
## 33 36.30000 36.60000 7 Bamberg 50.116699
## 34 35.30000 35.30000 6 Oxford 51.750000
## 35 34.80000 36.50000 3 Oxford 51.750000
## 36 36.60000 36.90000 8 Poland 52.233307
## 37 35.50000 35.40000 5 Kassel 48.766693
## 38 36.40000 36.70000 7 Chile 33.449997
## 39 37.00000 36.80000 9 Portugal 38.716705
## 40 34.50000 36.00000 6 Oxford 51.750000
## 41 35.94444 36.77778 9 VCU 37.751007
## 42 36.30000 36.96000 9 Kassel 49.190201
## 43 34.90000 36.80000 7 Oxford 51.750000
## 44 36.00000 36.00000 5 Bamberg 47.000000
## 45 36.60000 36.50000 10 Tsinghua 35.000000
## 46 34.20000 36.70000 7 Oxford 51.750000
## 47 34.80000 36.20000 3 Oxford 51.750000
## 48 35.70000 36.20000 4 Oxford 51.750000
## 49 36.00000 36.70000 10 Bamberg 49.649994
## 50 36.30000 36.60000 11 Tsinghua 30.666702
## 51 36.47000 36.79000 6 Zurich 47.000000
## 52 36.55000 36.90000 7 Zurich 47.400604
## 53 36.80000 37.00000 9 Poland 52.250000
## 54 36.70000 37.80000 7 Serbia 44.818604
## 55 35.40000 36.30000 7 METU 39.923004
## 56 35.90000 36.80000 8 Chile 33.449997
## 57 36.27000 36.66000 11 Kassel 51.717102
## 58 37.00000 37.11111 8 VCU 37.751007
## 59 35.30000 36.20000 5 Oxford 51.750000
## 60 36.50000 36.40000 8 Poland 54.434692
## 61 36.80000 36.60000 8 Bamberg 50.099396
## 62 37.10000 36.60000 10 Poland 52.416702
## 63 36.00000 36.00000 7 Portugal 38.716705
## 64 35.90000 36.50000 7 Oxford 51.750000
## 65 36.33333 36.33333 8 VCU 37.399506
## 66 36.50000 36.40000 9 Poland 52.233307
## 67 36.10000 36.90000 11 Poland 52.066696
## 68 36.60000 36.70000 10 Poland 52.250000
## 69 37.00000 36.90000 9 Poland 53.233307
## 70 35.40000 36.00000 9 METU 41.013596
## 71 35.70000 36.90000 8 Oxford 51.750000
## 72 36.40000 36.60000 8 Portugal 38.716705
## 73 36.79000 36.28000 10 Poland 53.035797
## 74 36.40000 36.90000 6 Oxford 51.750000
## 75 36.80000 36.90000 9 Poland 52.593094
## 76 36.00000 35.90000 6 Oslo 59.912704
## 77 36.10000 36.40000 6 Serbia 44.818604
## 78 36.50000 36.60000 6 Oxford 51.750000
## 79 36.40000 36.90000 7 Chile 33.449997
## 80 36.90000 36.50000 8 Poland 54.360794
## 81 37.00000 36.90000 5 Serbia 44.818604
## 82 35.70000 36.80000 9 Chile 33.449997
## 83 36.40000 36.60000 7 Chile 33.449997
## 84 36.50000 36.60000 10 Poland 52.233307
## 85 34.90000 35.90000 4 Oxford 51.750000
## 86 36.30000 35.90000 8 Poland 52.250000
## 87 36.10000 36.10000 6 Chile 33.426281
## 88 35.70000 36.60000 5 METU 39.923004
## 89 36.60000 35.90000 10 Poland 53.416702
## 90 36.27778 36.22222 8 VCU 37.444901
## 91 37.00000 35.70000 10 Poland 52.250000
## 92 36.20000 36.50000 10 Poland 52.593094
## 93 36.50000 36.20000 9 Chile 33.449997
## 94 36.50000 36.40000 10 Poland 52.233307
## 95 36.50000 36.50000 9 Poland 52.250000
## 96 36.50000 36.60000 8 Bamberg 53.550003
## 97 36.74000 36.51000 9 Poland 52.233307
## 98 36.80000 37.00000 9 Poland 52.250000
## 99 36.90000 37.00000 10 Poland 53.416702
## 100 37.00000 36.90000 5 Serbia 51.000000
## 101 37.00000 36.90000 8 Oxford 51.750000
## 102 35.60000 35.90000 5 Oxford 51.750000
## 103 36.10000 36.10000 9 Bamberg 51.000000
## 104 36.40000 36.00000 10 Poland 52.593094
## 105 35.50000 37.00000 3 Oxford 51.750000
## 106 36.30000 36.30000 9 Poland 52.250000
## 107 36.40000 36.60000 12 Kassel 51.287796
## 108 36.60000 36.50000 8 Bamberg 53.550003
## 109 36.50000 36.80000 8 Poland 52.250000
## 110 36.60000 36.80000 8 Poland 52.250000
## 111 35.10000 35.10000 9 Bamberg 50.533295
## 112 36.50000 36.30000 9 Poland 52.250000
## 113 36.30000 36.50000 11 Poland 52.416702
## 114 36.90000 36.90000 7 Serbia 44.818604
## 115 36.10000 35.80000 8 Portugal 38.800995
## 116 35.90000 36.10000 9 Serbia 44.818604
## 117 36.10000 36.30000 8 Chile 33.449997
## 118 36.00000 36.70000 7 Portugal 38.716705
## 119 36.40000 36.30000 11 Poland 52.250000
## 120 36.33333 36.50000 7 VCU 37.733795
## 121 36.80000 36.10000 8 METU 39.923004
## 122 36.50000 36.50000 8 Poland 52.250000
## 123 36.50000 36.60000 6 Zurich 47.560303
## 124 36.30000 36.90000 11 Poland 54.360794
## 125 37.00000 36.70000 8 Zurich 47.000000
## 126 34.60000 36.00000 7 Kassel 50.079407
## 127 35.70000 35.70000 8 Portugal 38.716705
## 128 35.60000 35.80000 8 Oxford 51.750000
## 129 35.60000 36.20000 8 METU 39.911697
## 130 35.90000 36.30000 8 Kassel 51.316696
## 131 36.05556 36.27778 6 VCU 37.553802
## 132 36.20000 36.30000 8 Serbia 44.818604
## 133 36.60000 36.90000 10 Poland 52.250000
## 134 36.70000 37.00000 11 Poland 54.360794
## 135 34.10000 36.20000 8 Oslo 59.916702
## 136 35.90000 36.20000 10 Poland 52.250000
## 137 35.50000 36.70000 6 Oxford 51.750000
## 138 36.00000 36.40000 8 METU 39.911499
## 139 36.30000 36.20000 6 METU 38.773499
## 140 36.40000 36.40000 9 Kassel 50.983307
## 141 36.40000 36.50000 7 Portugal 38.716705
## 142 36.41000 36.57000 10 Poland 52.327805
## 143 36.70000 36.70000 6 Serbia 44.818604
## 144 36.70000 36.70000 7 Poland 52.250000
## 145 36.90000 36.60000 5 Zurich 47.351593
## 146 36.60000 36.90000 10 Poland 52.250000
## 147 37.10000 37.10000 9 Poland 51.750000
## 148 37.30000 37.30000 9 Poland 51.100006
## 149 34.70000 36.00000 7 Oxford 51.750000
## 150 36.50000 35.80000 7 Poland 52.250000
## 151 36.40000 36.10000 8 Serbia 44.000000
## 152 36.40000 36.30000 9 Poland 50.315399
## 153 36.60000 36.30000 8 Chile 33.426281
## 154 36.30000 36.70000 8 Oxford 51.750000
## 155 35.40000 37.70000 11 Poland 60.216705
## 156 36.50000 36.60000 9 Oslo 59.912704
## 157 36.40000 36.90000 6 Zurich 47.025894
## 158 36.50000 36.80000 7 Chile 33.449997
## 159 36.80000 36.70000 9 Kassel 51.491806
## 160 36.90000 37.20000 8 Poland 52.083298
## 161 37.10000 37.10000 9 Poland 52.250000
## 162 35.40000 36.60000 8 Oxford 51.750000
## 163 36.27778 35.94444 7 UCSB 34.432907
## 164 36.43000 36.05000 5 Zurich 47.366699
## 165 36.40000 36.20000 8 Chile 33.449997
## 166 36.50000 36.40000 10 Poland 53.333099
## 167 36.50000 36.60000 10 Poland 50.633301
## 168 36.40000 36.70000 6 Oxford 51.750000
## 169 36.60000 36.70000 9 Poland 52.593094
## 170 37.40000 38.10000 10 Poland 52.250000
## 171 35.30000 35.50000 5 Kassel 51.249603
## 172 35.00000 36.40000 8 METU 39.911697
## 173 36.00000 36.00000 5 METU 39.923004
## 174 36.31000 36.12000 8 Poland 52.593094
## 175 36.40000 36.50000 9 Poland 54.350006
## 176 37.00000 36.20000 10 Poland 52.416702
## 177 36.50000 36.70000 7 Zurich 47.366699
## 178 36.50000 36.90000 8 Kassel 52.516693
## 179 36.80000 36.80000 7 Chile 33.449997
## 180 36.90000 37.30000 9 Poland 53.600006
## 181 36.00000 35.90000 6 Oslo 60.391495
## 182 36.00000 36.00000 7 Kassel 51.033295
## 183 36.00000 36.20000 8 Kassel 51.249603
## 184 36.00000 36.30000 8 Chile 33.449997
## 185 36.30000 36.20000 8 Chile 33.449997
## 186 36.30000 36.30000 9 Poland 51.750000
## 187 36.50000 36.40000 6 METU 39.911697
## 188 36.60000 36.30000 6 METU 39.911697
## 189 36.30000 36.70000 5 Oxford 51.750000
## 190 36.40000 36.60000 9 Poland 53.127106
## 191 36.20000 36.90000 7 Oxford 51.750000
## 192 36.70000 36.40000 10 METU 39.911697
## 193 36.80000 36.70000 5 Chile 33.449997
## 194 37.00000 37.20000 9 Poland 52.250000
## 195 35.20000 36.10000 5 Oxford 51.750000
## 196 35.30000 36.20000 6 Oxford 51.750000
## 197 36.08000 36.03000 11 Bamberg 49.440308
## 198 36.30000 35.90000 6 METU 39.911697
## 199 36.20000 36.10000 9 Poland 52.233307
## 200 36.20000 36.30000 9 Oslo 59.267502
## 201 36.00000 36.50000 7 VCU 37.552200
## 202 36.10000 36.40000 6 Kassel 51.316696
## 203 36.33333 36.44444 8 VCU 39.185699
## 204 36.50000 36.30000 8 Poland 52.233307
## 205 36.61000 36.28000 9 Poland 52.250000
## 206 36.40000 36.50000 7 Poland 54.500000
## 207 36.50000 36.60000 7 METU 39.923004
## 208 36.60000 36.60000 7 Chile 33.449997
## 209 36.90000 36.40000 8 METU 39.911697
## 210 36.70000 36.60000 8 Kassel 51.287796
## 211 36.70000 37.20000 7 METU 39.911697
## 212 35.30000 35.50000 7 Kassel 53.550003
## 213 35.77778 35.72222 4 VCU 37.402298
## 214 35.70000 35.90000 5 Oxford 51.750000
## 215 37.10000 35.90000 7 Oxford 51.750000
## 216 36.61111 36.55556 4 VCU 37.553299
## 217 36.70000 36.70000 9 Serbia 44.818604
## 218 36.90000 36.58000 9 Poland 51.939301
## 219 36.80000 36.80000 5 Serbia 44.870804
## 220 36.94444 36.83333 9 VCU 37.552200
## 221 37.00000 37.00000 3 Zurich 47.531799
## 222 37.20000 37.08000 5 Kassel 50.170807
## 223 36.00000 35.00000 6 Oxford 51.750000
## 224 35.10000 36.10000 6 Kassel 51.316696
## 225 35.50000 35.80000 5 Zurich 47.360596
## 226 35.50000 36.40000 8 Oxford 51.750000
## 227 36.00000 36.00000 10 Poland 53.416702
## 228 35.60000 36.40000 7 Serbia 44.818604
## 229 35.50000 36.60000 8 Kassel 51.316696
## 230 36.10000 36.00000 7 Chile 33.449997
## 231 35.50000 36.90000 7 Oxford 51.750000
## 232 36.00000 36.40000 6 Kassel 51.316696
## 233 36.50000 36.40000 7 Chile 33.449997
## 234 36.40000 36.60000 8 SMU 1.293106
## 235 36.50000 36.50000 7 Serbia 44.818604
## 236 36.44444 36.72222 10 VCU 37.619202
## 237 36.60000 36.70000 5 Oxford 51.750000
## 238 36.61111 36.72222 8 VCU 37.552200
## 239 36.70000 36.70000 9 Poland 52.233307
## 240 36.70000 36.70000 6 METU 39.911697
## 241 36.80000 36.80000 9 Poland 52.250000
## 242 35.60000 35.50000 7 Bamberg 55.699997
## 243 35.30000 36.10000 5 Kassel 51.305603
## 244 35.80000 35.60000 6 Oxford 51.750000
## 245 35.60000 36.00000 6 Bamberg 51.371704
## 246 35.60000 36.40000 8 Kassel 51.287796
## 247 36.00000 36.10000 6 Kassel 50.087494
## 248 35.80000 36.40000 5 Kassel 51.305603
## 249 36.10000 36.20000 9 Zurich 46.980499
## 250 36.20000 36.40000 8 Oslo 60.141495
## 251 36.20000 36.40000 8 METU 39.911697
## 252 36.30000 36.50000 6 Kassel 51.316696
## 253 36.50000 36.30000 7 METU 39.911697
## 254 36.40000 36.50000 7 METU 39.923004
## 255 36.40000 36.59000 8 Bamberg 49.600006
## 256 36.50000 36.50000 8 Serbia 44.818604
## 257 36.40000 36.60000 8 METU 39.911697
## 258 36.40000 36.70000 5 Oxford 51.750000
## 259 36.50000 36.60000 8 Tsinghua 39.928894
## 260 36.50000 36.70000 7 Serbia 44.818604
## 261 36.50000 36.80000 9 Serbia 44.818604
## 262 36.70000 36.70000 7 METU 39.911697
## 263 36.90000 37.00000 5 Oxford 51.750000
## 264 34.30000 36.50000 5 Oxford 51.750000
## 265 36.30000 35.60000 5 METU 39.911697
## 266 35.90000 36.20000 5 Chile 33.449997
## 267 36.00000 36.10000 6 METU 39.911697
## 268 35.80000 36.60000 6 Oxford 51.750000
## 269 36.10000 36.40000 6 METU 39.923004
## 270 36.40000 36.10000 8 Portugal 38.716705
## 271 36.20000 36.40000 9 Tsinghua 39.928894
## 272 36.50000 36.30000 7 Oxford 51.750000
## 273 36.00000 36.80000 5 Oxford 51.750000
## 274 36.30000 36.50000 7 Oxford 51.750000
## 275 36.42000 36.41000 7 Kassel 50.097702
## 276 36.40000 36.50000 7 Chile 40.754501
## 277 36.00000 37.00000 7 Chile 40.908295
## 278 36.30000 36.70000 6 METU 39.911697
## 279 36.40000 36.70000 8 Tsinghua 39.928894
## 280 36.50000 36.70000 7 Kassel 51.199997
## 281 37.00000 36.50000 7 Poland 50.350006
## 282 36.80000 36.70000 8 METU 39.911697
## 283 36.70000 36.90000 8 Kassel 48.966705
## 284 37.00000 37.30000 7 Bamberg 49.300003
## 285 37.30000 37.00000 9 Bamberg 48.116699
## 286 37.20000 37.20000 8 Tsinghua 39.928894
## 287 38.10000 38.10000 8 Poland 54.360794
## 288 34.60000 36.20000 6 Oxford 51.750000
## 289 34.60000 36.20000 5 Oxford 51.750000
## 290 35.60000 35.70000 5 METU 39.911697
## 291 35.40000 35.90000 8 Kassel 51.315201
## 292 35.60000 35.80000 5 METU 39.911697
## 293 35.50000 36.10000 7 Kassel 51.287796
## 294 35.90000 35.80000 5 Southampton 50.917099
## 295 36.00000 35.90000 7 Poland 54.500000
## 296 35.50000 36.40000 6 Oxford 51.750000
## 297 35.60000 36.40000 7 Oslo 59.912704
## 298 35.80000 36.20000 5 SMU 1.293106
## 299 36.00000 36.10000 5 Serbia 44.818604
## 300 36.00000 36.10000 7 Kassel 51.000000
## 301 35.90000 36.20000 8 Kassel 51.287796
## 302 35.94444 36.22222 6 VCU 37.442596
## 303 35.60000 36.60000 6 Oxford 51.750000
## 304 35.76000 36.48000 6 Kassel 50.133301
## 305 36.10000 36.40000 8 SMU 1.293106
## 306 36.10000 36.50000 8 Tsinghua 39.928894
## 307 36.30000 36.40000 7 SMU 1.293106
## 308 36.50000 36.30000 7 Serbia 44.818604
## 309 36.56000 36.26000 9 Poland 54.583298
## 310 36.26000 36.59000 6 Kassel 51.319504
## 311 36.38889 36.50000 7 VCU 37.516006
## 312 36.50000 36.50000 6 Serbia 44.818604
## 313 36.50000 36.50000 7 Poland 52.250000
## 314 36.20000 36.80000 6 Kassel 49.142303
## 315 36.40000 36.60000 10 Kassel 50.600006
## 316 36.50000 36.60000 7 Tsinghua 39.928894
## 317 36.70000 36.60000 8 Poland 52.250000
## 318 36.30000 37.10000 8 Tsinghua 39.928894
## 319 36.83333 36.77778 8 VCU 37.557693
## 320 34.00000 36.20000 5 Oxford 51.750000
## 321 34.10000 36.20000 8 Oxford 51.750000
## 322 34.60000 35.70000 6 SMU 1.293106
## 323 35.30000 35.20000 6 METU 39.911697
## 324 34.11111 36.55556 5 VCU 37.553802
## 325 35.30000 35.90000 6 Zurich 47.399902
## 326 35.50000 35.70000 6 Kassel 52.409698
## 327 35.30000 36.10000 6 Oxford 51.750000
## 328 35.70000 35.80000 8 Serbia 44.818604
## 329 35.80000 35.80000 6 SMU 1.293106
## 330 35.70000 36.00000 7 Bamberg 48.149994
## 331 35.70000 36.10000 5 Oxford 51.750000
## 332 35.80000 36.00000 8 Poland 54.350006
## 333 35.40000 36.40000 7 Oslo 59.916702
## 334 35.80000 36.00000 6 METU 39.911697
## 335 36.13000 35.69000 7 Zurich 47.366699
## 336 35.90000 36.00000 7 Kassel 51.308304
## 337 35.80000 36.10000 5 Oxford 51.750000
## 338 35.90000 36.20000 5 Zurich 46.538803
## 339 36.05556 36.05556 8 VCU 37.541504
## 340 35.70000 36.50000 6 Oxford 51.750000
## 341 35.80000 36.40000 4 METU 39.911697
## 342 35.80000 36.50000 7 METU 39.911697
## 343 36.30000 36.00000 5 Oxford 51.750000
## 344 36.00000 36.30000 5 Zurich 47.292007
## 345 36.20000 36.20000 8 Poland 52.250000
## 346 36.10000 36.30000 9 Oslo 59.912704
## 347 36.30000 36.10000 9 Poland 51.100006
## 348 36.00000 36.40000 7 Oslo 59.912704
## 349 36.00000 36.40000 6 METU 39.911697
## 350 35.80000 36.70000 8 Oxford 51.750000
## 351 36.20000 36.40000 6 Serbia 44.818604
## 352 36.40000 36.27000 8 Serbia 44.818604
## 353 36.40000 36.30000 5 Chile 33.449997
## 354 36.40000 36.40000 7 Serbia 44.818604
## 355 36.40000 36.40000 7 Portugal 40.660995
## 356 36.10000 36.70000 5 METU 39.911697
## 357 36.61111 36.27778 5 VCU 37.552200
## 358 36.40000 36.50000 7 Poland 52.250000
## 359 36.50000 36.40000 7 METU 39.911697
## 360 36.40000 36.50000 7 Oslo 59.912704
## 361 36.50000 36.40000 5 SMU 1.293106
## 362 36.60000 36.40000 7 Serbia 44.818604
## 363 36.50000 36.50000 9 Tsinghua 30.580093
## 364 36.40000 36.60000 6 Oxford 51.750000
## 365 36.70000 36.30000 8 Tsinghua 30.580093
## 366 36.60000 36.40000 5 METU 39.911697
## 367 36.40000 36.70000 6 Kassel 49.493393
## 368 36.70000 36.40000 7 Poland 52.616699
## 369 36.61111 36.50000 8 VCU 37.311996
## 370 36.50000 36.70000 9 Poland 54.350006
## 371 36.40000 36.80000 7 Poland 54.350006
## 372 36.70000 36.60000 6 Zurich 47.409103
## 373 36.70000 36.60000 6 SMU 1.293106
## 374 36.90000 36.50000 10 Poland 51.100006
## 375 36.77778 36.72222 6 VCU 38.926605
## 376 36.50000 37.00000 8 Tsinghua 39.928894
## 377 36.81000 36.71000 9 Poland 49.816696
## 378 37.00000 36.60000 6 METU 39.911697
## 379 36.80000 36.80000 7 Chile 33.449997
## 380 36.94444 36.72222 6 VCU 37.552200
## 381 36.80000 36.90000 5 Serbia 44.818604
## 382 36.70000 37.00000 6 SMU 1.293106
## 383 36.80000 36.90000 8 Tsinghua 39.928894
## 384 36.92000 36.84000 7 Poland 51.100006
## 385 36.80000 37.00000 8 Tsinghua 30.580093
## 386 36.70000 37.10000 8 Tsinghua 30.580093
## 387 36.80000 37.00000 5 SMU 1.293106
## 388 36.99000 36.87000 8 Poland 51.100006
## 389 36.90000 37.10000 6 Serbia 44.818604
## 390 37.00000 37.00000 6 Oslo 59.986206
## 391 34.20000 35.90000 5 Oxford 51.750000
## 392 34.30000 36.50000 4 Oslo 59.916702
## 393 35.30000 35.60000 6 METU 39.911697
## 394 34.80000 36.10000 5 Oxford 51.750000
## 395 35.10000 36.10000 6 Oxford 51.750000
## 396 35.00000 36.30000 7 Tsinghua 39.928894
## 397 35.70000 35.60000 6 Chile 33.426281
## 398 35.60000 35.80000 7 SMU 1.293106
## 399 35.75000 35.68333 6 VCU 37.541504
## 400 35.30000 36.30000 6 Oxford 51.750000
## 401 35.88889 35.72222 6 VCU 37.553802
## 402 35.10000 36.60000 7 Kassel 51.316696
## 403 35.16667 36.72222 5 VCU 37.553802
## 404 35.80000 36.10000 5 METU 39.911697
## 405 35.70000 36.30000 6 Southampton 50.917099
## 406 36.10000 36.10000 6 Kassel 49.375702
## 407 36.16667 36.11111 8 VCU 37.552200
## 408 36.10000 36.20000 5 Kassel 51.305603
## 409 35.50000 36.80000 7 Oxford 51.750000
## 410 35.80000 36.60000 8 Oslo 59.912704
## 411 36.20000 36.30000 7 Zurich 50.083298
## 412 36.10000 36.40000 8 Zurich 47.144897
## 413 36.28000 36.28000 5 VCU 37.552200
## 414 35.90000 36.70000 6 METU 39.911697
## 415 36.70000 35.90000 6 METU 39.911697
## 416 36.30000 36.30000 5 SMU 1.293106
## 417 35.90000 36.70000 6 Oxford 51.750000
## 418 36.30000 36.30000 8 Southampton 50.917099
## 419 36.10000 36.50000 7 Oslo 59.916702
## 420 36.30000 36.30000 7 SMU 1.293106
## 421 36.43000 36.20000 7 Bamberg 48.149994
## 422 36.33000 36.36000 7 Bamberg 49.904495
## 423 36.20000 36.50000 5 METU 39.911697
## 424 36.40000 36.30000 6 SMU 1.293106
## 425 36.20000 36.50000 6 Oslo 59.916702
## 426 36.00000 36.70000 5 Oxford 51.750000
## 427 36.38889 36.38889 7 VCU 38.433594
## 428 36.50000 36.30000 8 Bamberg 49.383408
## 429 35.90000 36.90000 7 Southampton 51.500000
## 430 36.40000 36.40000 6 SMU 1.293106
## 431 36.33333 36.50000 6 VCU 44.878403
## 432 36.50000 36.38889 5 Zurich 47.560303
## 433 36.30000 36.60000 7 SMU 1.293106
## 434 36.40000 36.50000 8 Tsinghua 30.580093
## 435 36.40000 36.50000 8 Poland 52.250000
## 436 36.61111 36.33333 7 VCU 37.553802
## 437 36.50000 36.50000 6 VCU 37.552200
## 438 36.50000 36.50000 8 Poland 50.083298
## 439 36.30000 36.70000 8 Tsinghua 39.928894
## 440 36.60000 36.40000 6 SMU 1.293106
## 441 36.50000 36.60000 5 Kassel 50.149994
## 442 36.40000 36.70000 8 METU 39.911697
## 443 36.38889 36.72222 5 SMU 1.293106
## 444 36.54000 36.64000 8 Bamberg 49.904495
## 445 36.60000 36.60000 5 Serbia 44.818604
## 446 36.60000 36.60000 6 Kassel 50.116699
## 447 36.44000 36.79000 10 Poland 52.416702
## 448 36.50000 36.80000 5 Serbia 44.818604
## 449 36.80000 36.50000 5 Kassel 51.305603
## 450 36.60000 36.70000 8 Tsinghua 39.928894
## 451 36.60000 36.70000 9 Poland 51.050003
## 452 36.72222 36.66667 6 VCU 37.553802
## 453 36.60000 36.80000 5 Bamberg 55.699997
## 454 36.70000 36.70000 7 Poland 52.233307
## 455 36.74000 36.73000 7 Kassel 51.000000
## 456 36.60000 36.90000 9 Tsinghua 39.928894
## 457 36.70000 36.80000 8 Tsinghua 39.928894
## 458 36.55556 37.00000 6 VCU 37.553802
## 459 36.80000 36.80000 7 Serbia 44.818604
## 460 36.80000 36.80000 5 Serbia 44.818604
## 461 36.88889 36.88889 8 VCU 37.552200
## 462 36.80000 37.00000 5 Southampton 54.962097
## 463 36.77778 37.05556 7 VCU 39.739197
## 464 36.77778 37.05556 8 VCU 40.214005
## 465 36.95000 36.92000 10 Poland 54.500000
## 466 37.05556 37.05556 7 VCU 37.613403
## 467 37.13000 36.99000 6 Kassel 51.000000
## 468 37.10000 37.20000 5 Oxford 51.750000
## 469 38.00000 38.00000 9 Poland 52.250000
## 470 34.40000 35.90000 6 Oxford 51.750000
## 471 34.60000 36.00000 5 METU 39.911697
## 472 34.90000 36.10000 5 Oxford 51.750000
## 473 34.70000 36.40000 5 Oxford 51.750000
## 474 35.20000 36.00000 7 METU 39.911697
## 475 35.10000 36.10000 6 METU 39.911697
## 476 35.70000 35.50000 6 SMU 1.293106
## 477 35.60000 35.60000 6 SMU 1.293106
## 478 35.30000 36.00000 8 METU 39.911697
## 479 35.70000 35.70000 6 SMU 1.293106
## 480 35.70000 35.70000 6 SMU 1.293106
## 481 35.44444 36.00000 5 VCU 37.552200
## 482 35.50000 36.00000 7 METU 39.911697
## 483 35.70000 35.80000 8 Kassel 50.133301
## 484 35.10000 36.50000 7 METU 39.911697
## 485 35.60000 36.00000 6 SMU 1.293106
## 486 35.61111 36.05556 7 VCU 37.552200
## 487 35.30000 36.40000 6 METU 39.911697
## 488 35.70000 36.00000 6 METU 39.911697
## 489 35.80000 36.00000 5 SMU 1.293106
## 490 35.55556 36.33333 7 VCU 37.552200
## 491 35.90000 36.00000 9 Portugal 38.716705
## 492 36.00000 35.90000 7 Oslo 59.912704
## 493 35.50000 36.40000 6 SMU 1.293106
## 494 35.40000 36.60000 7 METU 39.911697
## 495 35.70000 36.30000 6 METU 39.911697
## 496 35.60000 36.40000 7 Kassel 51.233307
## 497 36.16667 35.88889 7 VCU 37.552200
## 498 36.00000 36.10000 6 SMU 1.293106
## 499 35.70000 36.40000 7 METU 39.911697
## 500 35.50000 36.60000 7 METU 39.911697
## 501 35.72222 36.38889 5 VCU 38.811493
## 502 36.27778 35.88889 4 VCU 37.553802
## 503 35.80000 36.40000 6 METU 39.911697
## 504 36.10000 36.10000 6 SMU 1.293106
## 505 36.20000 36.00000 4 SMU 1.293106
## 506 35.90000 36.30000 10 Tsinghua 30.580093
## 507 36.00000 36.30000 4 Kassel 50.017593
## 508 35.60000 36.70000 8 Oslo 59.912704
## 509 35.90000 36.40000 8 Oslo 59.912704
## 510 36.20000 36.10000 5 SMU 1.293106
## 511 36.30000 36.00000 5 METU 39.911697
## 512 36.27778 36.05556 8 VCU 37.553802
## 513 36.20000 36.20000 5 METU 39.911697
## 514 36.20000 36.20000 5 METU 39.911697
## 515 36.10000 36.30000 6 Bamberg 48.283295
## 516 35.50000 37.00000 6 METU 39.911697
## 517 36.20000 36.30000 7 SMU 1.293106
## 518 36.10000 36.40000 8 Tsinghua 30.580093
## 519 36.30000 36.30000 6 METU 39.911697
## 520 36.30000 36.30000 7 METU 39.911697
## 521 36.40000 36.20000 5 SMU 1.293106
## 522 36.20000 36.40000 5 SMU 1.293106
## 523 36.00000 36.60000 8 Tsinghua 30.580093
## 524 36.20000 36.40000 6 SMU 1.293106
## 525 36.33333 36.27778 8 VCU 37.516006
## 526 36.50000 36.16667 7 VCU 37.502304
## 527 36.40000 36.30000 7 SMU 1.293106
## 528 36.30000 36.40000 5 SMU 1.293106
## 529 36.30000 36.40000 5 METU 39.911697
## 530 36.27778 36.44444 5 VCU 37.444901
## 531 36.50000 36.22222 6 VCU 37.552200
## 532 36.50000 36.30000 4 Oslo 59.916702
## 533 36.40000 36.40000 8 Tsinghua 30.580093
## 534 36.30000 36.50000 6 SMU 1.293106
## 535 36.30000 36.50000 8 Tsinghua 30.580093
## 536 35.80000 37.00000 6 METU 39.911697
## 537 36.30000 36.50000 8 Tsinghua 30.666702
## 538 36.44444 36.44444 9 VCU 37.195206
## 539 36.30000 36.60000 5 Oxford 51.750000
## 540 36.40000 36.50000 10 Tsinghua 30.580093
## 541 36.30000 36.60000 8 Tsinghua 39.928894
## 542 36.10000 36.80000 NA Tsinghua 30.666702
## 543 36.40000 36.50000 5 Oxford 51.750000
## 544 36.38889 36.61111 6 VCU 37.557693
## 545 36.40000 36.60000 7 Serbia 43.580002