-
Notifications
You must be signed in to change notification settings - Fork 256
/
chapter_7.Rmd
993 lines (721 loc) · 18.8 KB
/
chapter_7.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
---
title: ""
author: "Pac_B"
date: ""
output:
xaringan::moon_reader:
css: [default, css/Custumed_Style.css,css/zh-CN.css]
lib_dir: libs
nature:
highlightLines: true
highlightStyle: github
countIncrementalSlides: false
seal: true
ratio: 16:9
params:
output_dir: "../output"
---
class: center, middle
<span style="font-size: 50px;">**第七章**</span> <br>
<span style="font-size: 50px;">__如何探索数据: __</span> <br>
<span style="font-size: 40px;">描述性统计与数据可视化基础</span><br>
<span style="font-size: 30px;">胡传鹏</span> <br>
<span style="font-size: 20px;"> </span> <br>
<span style="font-size: 30px;">`r Sys.Date()`</span> <br>
<span style="font-size: 20px;"> Made with Rmarkdown</span> <br>
```{r setup, include=FALSE}
knitr::opts_chunk$set(
fig.width=9, fig.height=4, fig.retina=2,
out.width="100%",
message = FALSE,
warning = F
)
```
```{css extra.css, echo=FALSE}
/* ---- extra.css ---- */
.bigfont {
font-size: 30px;
}
.size5{
font-size: 20px;
}
.tit_font{
font-size: 60px;
}
```
---
# Packages
```{r}
if (!requireNamespace('pacman', quietly = TRUE)) {
install.packages('pacman')
}
pacman::p_load(
# 本节课需要用到的 packages
here,skimr,quartets,GGally,showtext,bruceR,tidyverse,DataExplorer,
# 生成课件
xaringan,xaringanthemer,xaringanExtra)
```
---
class: inverse center middle
.tit_font[
回顾
]
???
- 回顾
- 数据探索与描述统计
- 为什么可视化
- 为什么用 ggplot 画图
- ggplot 绘图的原理
- 基本图形简介
- 散点图
- 柱状图
- 密度图
-
---
## 7.0.1 批量导入数据
```{r xaringan-panelset, echo=FALSE}
xaringanExtra::use_panelset()
```
.panelset[
.panel[.panel-name[获取地址]
```{r }
# 所有数据路径
files <- list.files( #<<
## <- & =
here::here("data", "match"),
pattern = "data_exp7_rep_match_.*\\.out$",
full.names = TRUE)
```
.panel[.panel-name[数据类型转换]
```{r}
convert_data_types <- function(df) {
df <- df %>%
dplyr::mutate(Date = as.character(Date),Prac = as.character(Prac),
Sub = as.numeric(Sub),Age = as.numeric(Age),
Sex = as.character(Sex),Hand = as.character(Hand),
Block = as.numeric(Block),Bin = as.numeric(Bin),
Trial = as.numeric(Trial),Shape = as.character(Shape),
Label = as.character(Label),Match = as.character(Match),
CorrResp = as.character(CorrResp),Resp = as.character(Resp),
ACC = as.numeric(ACC),RT = as.numeric(RT))
return(df)
}
```
.panel[.panel-name[批量合并]
```{r }
df3 <- data.frame()
for (i in seq_along(files)) {
# 读取
df <- read.table(files[i], header = TRUE) %>%
dplyr::filter(Date != "Date") %>%
convert_data_types()
# 合并
df3 <- dplyr::bind_rows(df3, df)
}
# 删除临时变量
rm(df, files, i)
```
.panel[.panel-name[保存数据]
```{r eval=FALSE}
## NOT RUN
## 上节课介绍了write.csv,也可使用bruceR::export
bruceR::export(
df3,
file = here::here("data", "match","match_raw.csv"))
## 当然,export 不仅可以保存数据,也可以输出模型结果
```
.panel[.panel-name[修改列名-rename]
```{r}
## 修改第一列列名 Date 为小写 date
df3 %>% dplyr::rename( ## new_name = old_name
date = Date
) %>% colnames()
## 将全部列名都变成小写
df3 %>% dplyr::rename_with(
## 将字符向量全部变成小写; ~ 声明这是一个函数,.代表前面的数据(df3)传到.所在的位置
~tolower(.) #<<
## 即使用 tolower()对所有列名进行批量处理
##
) %>% colnames()
```
]
]
]
]
]
]
???
- 解释 变量赋值与参数接受符号差别
- 代码规范性,R 对缩进换行不敏感
- export 函数
---
## 7.0.2 代码书写规范
```{r eval=FALSE}
## 看起来如何?
iris %>% group_by(Species) %>% summarize_all(mean) %>%
ungroup %>% gather(measure, value, -Species) %>%
arrange(value)
```
--
```{r eval=FALSE}
### 是不是更整洁一些
iris %>%
dplyr::group_by(Species) %>%
dplyr::summarize_if(is.numeric, mean) %>%
dplyr::ungroup() %>%
tidyr::gather(measure, value, -Species) %>%
dplyr::arrange(value)
## 有没有自动挡…
```
.footnote[
-----
参考链接:[tidyverse style guide](https://style.tidyverse.org/index.html)
]
---
## 7.0.2 代码书写规范
```{r eval=FALSE}
## 使用 Ctrl + Shift + A (cmd+shift+A in Mac)
## 或者点击 Code --> Reformat Code (快捷键冲突)
## 自动增加空格与缩进
## 选中下面代码看看效果,尽管效果有限
## 还是平时养成书写习惯更好
files <- list.files(
here::here("data","match"),
pattern = "data_exp7_rep_match_.*\\.out$",
full.names = TRUE
)
```
.footnote[
-----
参考链接:[tidyverse style guide](https://style.tidyverse.org/index.html)
]
---
## 7.0.3 数据清洗
.pull-left[
### 列操作
- 增加、修改、删除(mutate)
- 列筛选(select & tidyseletion)
### 行操作
- 条件过滤(filter)
- 行索引(slice)
### 数据框
- 列/行合并:
bind_cols & bind_rows
- 匹配合并:
left_join, right_join, full_join
- 修改列名:
rownames or dplyr::rename
- 长/宽数据转换:
pivot_longer, pivot_wider
]
.pull-right[
### 分组计算
- group_by/ungroup
- summarise
- rowMeans or bruceR::MEAN(or SUM)
- case_when()
- 多列选取:across()
<br>
### 字符串(stringr package)
- str_xxx()系列
<br>
### 函数式编程(purrr package)
- map()系列,类似 apply() 系列
]
---
class: center,middle
<span style="font-size: 50px;">**第七章**</span> <br>
<span style="font-size: 50px;">__如何探索数据: __</span> <br>
<span style="font-size: 40px;">描述性统计与数据可视化基础</span><br>
---
class: inverse,center,middle
.bigfont[
数据已经清洗完成,下面应该做的是……]
--
.bigfont[
<br>
查看数据内容?
<br>
建模分析?
<br>
......
]
--
.bigfont[
先看一个数据(quartets::datasaurus_dozen)
]
---
.panelset[
.panel[.panel-name[view]
```{r}
quartets::datasaurus_dozen %>% ## 包中的数据
head(10)
```
.panel[.panel-name[`str()`]
```{r}
quartets::datasaurus_dozen %>% ## 包中的数据
str()
```
.panel[.panel-name[`summary()`]
```{r}
summary(datasaurus_dozen)
```
]]]]
---
class: middle,center
.tit_font[
好像没什么问题…
]
--
.tit_font[
<br>
作图看看呢
]
---
##
```{r echo=FALSE,eval=FALSE}
## NOT SHOW
## PLOT GIF
pacman::p_load(camcorder,tidyverse,bruceR)
data = quartets::datasaurus_dozen
colors = c('#FF5733','#00CED1','#FFD700',
'#8A2BE2','#32CD32','#4682B4',
'#FF4500','#9400D3','#00FF00',
'#FF1493','#8B0000','#FF69B4','#20B2AA')
orders <- data$dataset %>% unique()
orders <- c(orders[-1],orders[1])
pic <- list()
for(i in 1:13) {
pic[[i]] <- data %>% filter(dataset == orders[i]) %>%
ggplot(aes(x, y)) +
geom_point(color = colors[i]) +
geom_smooth(method = "lm", color = 'black') +
labs(title = paste0('dataset: ', orders[i])) +
bruceR::theme_bruce() +
theme(title = element_text(size = 20))
}
gg_record(
dir <- file.path(tempdir(), "recording"),
device = "png",
width = 5,
height = 5,
units = "in",
dpi = 500
)
for(i in 1:13){
pic[[i]] %>% print()
}
gg_playback(name = file.path(paste0(getwd(),'/picture/chp7/'), "dino.gif"),
first_image_duration = 1,
last_image_duration = 3,
frame_duration = 1,loop = F,
playback = T,last_as_first = F,
)
gg_stop_recording()
```
```{r echo=FALSE,fig.align='center',out.width='50%'}
knitr::include_graphics('picture/chp7/dino.gif')
```
```{r echo=FALSE,fig.width=7,fig.height=6,fig.dpi=600,out.width='60%',fig.align='center',eval = FALSE}
### NOT RUN
quartets::datasaurus_dozen %>%
ggplot(aes(x, y, color = dataset)) +
geom_point() +
geom_smooth(method = "lm") +
facet_wrap(~ dataset)
```
---
layout: true
# 7.1 探索性数据分析
---
.bigfont[了解原始数据的特点,做到心中有数,属于一个更广泛的概念:
**探索性数据分析(Exploratory Data Analysis, EDA)**
]
> In statistics, exploratory data analysis (EDA) is an approach to analyzing data sets to summarize their main characteristics, often with visual methods (Wikipedia).
```{r,echo=FALSE,out.width="50%",fig.align='center'}
knitr::include_graphics("https://blog.escueladedatosvivos.ai/content/images/2020/12/main_img.png")
```
---
.bigfont[进行EDA是为了更加了解自己的数据,从而做出基本的判断,但每一次探索背后都对应着特定的问题。我们可以先从几个基础的简单问题开始:]
.pull-left[
.bigfont[
- 有哪些变量?
- 变量的类型?
- 变量的分布?
- 变量间关系?
]
]
.pull-right[
```{r eval = T}
# 读取数据
pg_raw <- bruceR::import(here::here(
"data", "penguin","penguin_rawdata.csv"))
mt_raw <- bruceR::import(here::here(
"data", "match","match_raw.csv"))
```
]
---
.panelset[
.panel[.panel-name[`head`]
```{r, out.width = "10px"}
DT::datatable(head(mt_raw, 3)) # 注:datatable 这里只为了在网页中输出
```
.panel[.panel-name[`str`]
```{r}
mt_raw %>%
str()
```
]]]
---
## 常用函数
.panelset[
.panel[.panel-name[`summary`]
```{r,out.width="10%"}
summary(mt_raw) %>%
knitr::kable() # 注:kable函数只为了输出
```
.panel[.panel-name[`skimr::skim()--1`]
```{r}
skimr::skim(mt_raw) %>%
capture.output() %>%
.[1:12]
```
.panel[.panel-name[`skimr::skim()--2`]
```{r}
skimr::skim(mt_raw) %>%
capture.output() %>%
.[13:24]
```
.panel[.panel-name[`skimr::skim()--3`]
```{r}
skimr::skim(mt_raw) %>%
capture.output() %>%
.[25:41]
```
.panel[.panel-name[`bruceR::Describe()`]
```{r,warning=FALSE}
bruceR::Describe(mt_raw) %>%
capture.output() %>%
.[2:17] ## 可以使用 file参数输出 Word
```
]]]]]]
---
layout: false
class: inverse middle center
.tit_font[
但是...<br>还不够
]
---
# 7.2 数据可视化
## 7.2.1 可视化的重要性
.pull-left[
.size5[
Before we do any statistical analyses or present any summary statistics, we should visualise our data as it is:
- A quick and easy way to check our data make sense, and to identify any unusual trends.
- A way to honestly present the features of our data to anyone who reads our research.
]
]
--
.pull-right[
```{r echo=FALSE,fig.width=5,out.width='90%',fig.align='default'}
library(showtext)
showtext::showtext_auto(enable = T)
quartets::datasaurus_dozen %>%
filter(dataset == 'dino') %>%
ggplot(aes(x,y)) + geom_point(color ='#20B2AA') +
theme_bruce() +
labs(title = '请记住这只 DINO !!!') +
theme(plot.title = element_text(size = 20))
```
]
<br>
<br>
.size5[
绘图的方式有很多,如 Base graphics, grid, lattice,plotly...为什么使用<span style="color: red;">ggplot2</span>?
]
---
# 7.2 数据可视化
## 7.2.2 为何使用 ggplot2?
<br>
.size5[
* 化繁为简:大量的默认值
* 精准定制:所有元素均可控
* 易于叠加:丰富的信息
* 日益丰富的生态系统 [https://r-graph-gallery.com/](https://r-graph-gallery.com/)
]
.bigfont[
总之,好看、业界标杆,举个例子:
]
---
## 7.2.2 为何使用 ggplot?
```{r echo=FALSE,out.width='63%',fig.align='center'}
knitr::include_graphics('picture/chp7/exmp2.png')
```
---
## 7.2.2 为何使用 ggplot?
```{r echo=FALSE,out.width='63%',fig.align='center'}
knitr::include_graphics('picture/chp7/exmp1.png')
```
.footnote[
-----
Falster, G., Konecky, B., Coats, S. et al. Forced changes in the Pacific Walker circulation over the past millennium. Nature 622, 93–100 (2023). https://doi.org/10.1038/s41586-023-06447-0
]
---
## 7.2.3 ggplot2 的逻辑
.left-column[
.bigfont[
- 数据映射
]
]
.right-column[
```{r echo=FALSE,out.width='75%'}
knitr::include_graphics('picture/chp7/mapping.jpg')
```
]
---
## 7.2.3 ggplot2 的逻辑
.left-column[
.bigfont[
- 数据映射
- 图层叠加
]
]
.right-column[
```{r echo=FALSE,out.width='70%'}
knitr::include_graphics('https://psyteachr.github.io/data-skills-v1/images/layers.png')
```
]
---
## 7.2.3 ggplot2 的逻辑
.left-column[
.bigfont[
- 数据映射
- 图层叠加
- Code展示
]]
.right-column[
.panelset[
.panel[.panel-name[数据映射]
```{r fig.width=7,fig.height=6,fig.dpi=600,out.width='50%',fig.align='center'}
# 以penguin问卷中前后体温为例
p1 <- pg_raw %>%
ggplot(aes(x = Temperature_t1, # 确定映射到xy轴的变量
y = Temperature_t2))
p1 ## 坐标轴名称已对应,虽然图片为空
```
.panel[.panel-name[添加图层-散点]
```{r fig.width=7,fig.height=6,fig.dpi=600,out.width='60%',fig.align='center'}
p1 + geom_point()
```
.panel[.panel-name[添加图层-拟合曲线]
```{r fig.width=7,fig.height=6,fig.dpi=600,out.width='60%',fig.align='center'}
p1 + geom_point() + geom_smooth(method = 'lm')
```
.panel[.panel-name[改变映射]
```{r fig.width=7,fig.height=6,fig.dpi=600,out.width='50%',fig.align='center'}
pg_raw %>%
drop_na(Temperature_t1,Temperature_t2,sex) %>%
ggplot(aes(x = Temperature_t1,
y = Temperature_t2,
color = factor(sex))) +
geom_point() + geom_smooth()
```
]]]]]]
???
- 映射与添加图层是两个概念,映射后可以不进行绘图
- 图层的添加使用 +
- 除了 x 和 y,仍然有其他变量进行映射,如 color
---
## 7.2.4 单个图片的组成
```{r echo=FALSE,out.width='70%',fig.align='center'}
knitr::include_graphics('picture/chp7/comps1.png')
```
---
## 7.2.4 单个图片的组成
```{r echo=FALSE,out.width='75%',fig.align='center'}
knitr::include_graphics('picture/chp7/comps2.png')
```
---
layout: true
# 7.3 常用图形
---
## 直方图
<font size=5>
对于连续变量,我们可以使用直方图进行可视化。
以认知实验中被试的反应时数据为例。
</font>
<br>
.pull-left[
```{r fig.height=4, fig.width=6, message=FALSE, warning=FALSE,out.width='70%'}
pic_his <- mt_raw %>%
# 确定映射到x轴的变量
ggplot(aes(x = RT)) +
geom_histogram(bins = 40) +
theme_classic()
```
]
.pull-right[
```{r fig.height=4, fig.width=6, message=FALSE, warning=FALSE,out.width='100%',echo=FALSE}
pic_his
```
]
---
## 密度图
<font size=5>
  同样的我们可以使用密度图来描述反应时的分布情况。
</font>
.pull-left[
```{r fig.height=4, fig.width=6, message=FALSE, warning=FALSE,out.width='50%'}
pic_dens <- mt_raw %>% ggplot()+
# 绘制密度曲线
geom_density(aes(x = RT)) +
theme_classic()
```
]
.pull-right[
```{r fig.height=4, fig.width=6, message=FALSE, warning=FALSE,out.width='100%',echo=FALSE}
pic_dens
```
]
---
## 直方图 + 密度图
.pull-left[
```{r eval=FALSE}
## 尝试将两个图层叠加在一起
mt_raw %>% ggplot(aes(x = RT))+
geom_histogram(bins = 40) +
geom_density() +
theme_classic()
```
]
.pull-right[
```{r echo=FALSE,fig.height=3.5, fig.width=6, message=FALSE, warning=FALSE}
mt_raw %>% ggplot(aes(x = RT))+
geom_histogram(bins = 40) +
geom_density() +
theme_classic()
```
似乎密度曲线没有显示…
原因在于密度图和直方图Y轴单位并不相同,其实已经映射上了,
如果仔细观察 x 坐标轴还是能看到细微差异的。
]
---
## 直方图 + 密度图
.pull-left[
```{r fig.height=3.5, fig.width=6, message=FALSE, warning=FALSE,out.width='100%'}
pic_mix <- mt_raw %>%
ggplot(aes(x = RT,
## 直方图的统计结果通过after_stat(density)传递给了密度图
y = after_stat(density))) + #<<
geom_histogram() +
geom_density() +
theme_classic()
# 设定绘图风格
```
]
.pull-right[
```{r fig.height=3.5, fig.width=6, message=FALSE, warning=FALSE,out.width='100%',echo=FALSE}
pic_mix
```
]
---
## 箱线图
除了单个变量的可视化,我们可以尝试将两个变量的关系可视化。这里我们利用箱线图看看不同Label的RT如何。
.pull-left[
```{r fig.height=3.5, fig.width=6, message=FALSE, warning=FALSE,out.width='50%'}
pic_box <- mt_raw %>% ggplot(aes(
x = Label,
y = RT)) +
geom_boxplot(staplewidth = 1) +
# 绘制箱线图并添加上下边缘线
theme_classic()
```
]
.pull-right[
```{r fig.height=3.5, fig.width=6, message=FALSE, warning=FALSE,out.width='100%',echo=FALSE}
pic_box
```
]
.footnote[
----
矩形中间线为中位数,上下两条线分别为上四分位数和下四分位数;
1.5个四分位距(Q3-Q1)以外的值为离群值;geom_boxplot默认使用1.5IQR
]
---
layout: true
# 7.4 Explore data with DataExplorer
---
```{r fig.height=4, fig.width=6, message=FALSE, warning=FALSE,out.width='80%',eval=FALSE}
DataExplorer::plot_str(mt_raw)
```
```{r echo=FALSE,out.width='65%'}
knitr::include_graphics('picture/chp7/plotstr.png')
```
---
```{r fig.height=4, fig.width=6, message=FALSE, warning=FALSE,out.width='70%'}
DataExplorer::plot_intro(mt_raw)
```
---
```{r fig.height=4, fig.width=6, message=FALSE, warning=FALSE,out.width='70%'}
DataExplorer::plot_missing(mt_raw)
```
---
```{r fig.height=4, fig.width=6, message=FALSE, warning=FALSE,out.width='70%'}
DataExplorer::plot_bar(mt_raw)
```
---
```{r fig.height=4, fig.width=6, message=FALSE, warning=FALSE,out.width='70%'}
DataExplorer::plot_bar(mt_raw, by="Match")
```
---
```{r fig.height=4, fig.width=6, message=FALSE, warning=FALSE,out.width='70%'}
DataExplorer::plot_histogram(mt_raw)
```
---
```{r fig.height=4, fig.width=6, message=FALSE, warning=FALSE,out.width='70%'}
DataExplorer::plot_qq(pg_raw[,2:10])
```
---
```{r fig.height=4, fig.width=6, message=FALSE, warning=FALSE,out.width='70%'}
DataExplorer::plot_correlation(na.omit(pg_raw[, 2:30]))
```
---
## 使用ggpairs
.panelset[
```{r panelset=TRUE}
## 以 penguin project 数据中 ALEX, stress和 ECR 为例
pg_raw %>%
mutate(
# 计算均值
m_ALEX = bruceR::MEAN(.,
var = 'ALEX',items = 1:16,rev = c(4,12,14,16)),
m_stress = bruceR::MEAN(.,
var = 'stress',items = 1:14,rev = c(4:7,9,10,13)
),
m_ECR = bruceR::MEAN(.,
var = 'ECR',items = 1:36
)
) %>%
select(contains('m_')) %>%
GGally::ggpairs()
```
]
---
layout: false
#练习
.bigfont[
1. 读取match数据,对不同shape的击中率进行分组绘图,可使用boxplot观察差异。
2. 在上一题中,如何按照特定的顺序来展现 boxplot,比如按照moralSelf - immoralSelf - moralOther - immoralOther(提示:设置因子)
3. 读取penguin数据,选择自己感兴趣的两个变量进行处理并画出散点图。
]
#探索
.bigfont[
1. 在本章的例子中,我们举例了反应时的分布。但其实我们是对所有被试的所有反应时绘制了总的分布,那么我们能不能找到一个办法绘制出每一个被试的反应时分布呢?
2. 学会使用大语言模型进行学习,进行精准地提问。
]
---
# 参考阅读
.bigfont[
- [R Graphics Cookbook](https://r-graphics.org/)
- [ggplot2: Elegant Graphics for Data Analysis (3e)](https://ggplot2-book.org/index.html)
]