-
Notifications
You must be signed in to change notification settings - Fork 20
/
eval_ood.py
293 lines (240 loc) · 10.1 KB
/
eval_ood.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
# System libs
import os
import time
import argparse
from distutils.version import LooseVersion
# Numerical libs
import numpy as np
import torch
import torch.nn as nn
from scipy.io import loadmat
# Our libs
from config import cfg
from dataset import ValDataset
from models import ModelBuilder, SegmentationModule
from utils import AverageMeter, colorEncode, accuracy, intersectionAndUnion, setup_logger
from lib.nn import user_scattered_collate, async_copy_to
from lib.utils import as_numpy
from PIL import Image
from tqdm import tqdm
import anom_utils
colors = loadmat('data/color150.mat')['colors']
def visualize_result(data, pred, dir_result):
(img, seg, info) = data
# segmentation
seg_color = colorEncode(seg, colors)
# prediction
pred_color = colorEncode(pred, colors)
# aggregate images and save
im_vis = np.concatenate((img, seg_color, pred_color),
axis=1).astype(np.uint8)
img_name = info.split('/')[-1]
Image.fromarray(im_vis).save(os.path.join(dir_result, img_name.replace('.jpg', '.png')))
def eval_ood_measure(conf, seg_label, cfg, mask=None):
out_labels = cfg.OOD.out_labels
if mask is not None:
seg_label = seg_label[mask]
out_label = seg_label == out_labels[0]
for label in out_labels:
out_label = np.logical_or(out_label, seg_label == label)
in_scores = - conf[np.logical_not(out_label)]
out_scores = - conf[out_label]
if (len(out_scores) != 0) and (len(in_scores) != 0):
auroc, aupr, fpr = anom_utils.get_and_print_results(out_scores, in_scores)
return auroc, aupr, fpr
else:
print("This image does not contain any OOD pixels or is only OOD.")
return None
def evaluate(segmentation_module, loader, cfg, gpu):
acc_meter = AverageMeter()
intersection_meter = AverageMeter()
union_meter = AverageMeter()
time_meter = AverageMeter()
segmentation_module.eval()
aurocs, auprs, fprs = [], [], []
pbar = tqdm(total=len(loader))
for batch_data in loader:
# process data
batch_data = batch_data[0]
seg_label = as_numpy(batch_data['seg_label'][0])
img_resized_list = batch_data['img_data']
torch.cuda.synchronize()
tic = time.perf_counter()
with torch.no_grad():
segSize = (seg_label.shape[0], seg_label.shape[1])
scores = torch.zeros(1, cfg.DATASET.num_class, segSize[0], segSize[1])
scores = async_copy_to(scores, gpu)
for img in img_resized_list:
feed_dict = batch_data.copy()
feed_dict['img_data'] = img
del feed_dict['img_ori']
del feed_dict['info']
feed_dict = async_copy_to(feed_dict, gpu)
# forward pass
scores_tmp = segmentation_module(feed_dict, segSize=segSize)
scores = scores + scores_tmp / len(cfg.DATASET.imgSizes)
tmp_scores = scores
if cfg.OOD.exclude_back:
tmp_scores = tmp_scores[:,1:]
mask = None
_, pred = torch.max(scores, dim=1)
pred = as_numpy(pred.squeeze(0).cpu())
#for evaluating MSP
if cfg.OOD.ood == "msp":
conf, _ = torch.max(nn.functional.softmax(tmp_scores, dim=1),dim=1)
conf = as_numpy(conf.squeeze(0).cpu())
elif cfg.OOD.ood == "maxlogit":
conf, _ = torch.max(tmp_scores,dim=1)
conf = as_numpy(conf.squeeze(0).cpu())
elif cfg.OOD.ood == "background":
conf = tmp_scores[:, 0]
conf = as_numpy(conf.squeeze(0).cpu())
elif cfg.OOD.ood == "crf":
import pydensecrf.densecrf as dcrf
from pydensecrf.utils import unary_from_softmax, create_pairwise_bilateral, create_pairwise_gaussian
ch,h,w = scores.squeeze(0).size()
d = dcrf.DenseCRF2D(h, w, ch) # width, height, nlabels
tmp_scores = as_numpy(nn.functional.softmax(tmp_scores, dim=1).squeeze(0))
tmp_scores = as_numpy(tmp_scores)
U = unary_from_softmax(tmp_scores)
d.setUnaryEnergy(U)
pairwise_energy = create_pairwise_bilateral(sdims=(10,10), schan=13, img=tmp_scores, chdim=0)
d.addPairwiseEnergy(pairwise_energy, compat=10)
# Run inference for 100 iterations
Q_unary = d.inference(100)
# The Q is now the approximate posterior, we can get a MAP estimate using argmax.
map_soln_unary = np.argmax(Q_unary, axis=0)
# Unfortunately, the DenseCRF flattens everything, so get it back into picture form.
map_soln_unary = map_soln_unary.reshape((h,w))
conf = np.max(Q_unary, axis=0).reshape((h,w))
elif cfg.OOD.ood == "crf-gauss":
import pydensecrf.densecrf as dcrf
from pydensecrf.utils import unary_from_softmax, create_pairwise_bilateral, create_pairwise_gaussian
ch,h,w = scores.squeeze(0).size()
d = dcrf.DenseCRF2D(h, w, ch) # width, height, nlabels
tmp_scores = as_numpy(nn.functional.softmax(tmp_scores, dim=1).squeeze(0))
tmp_scores = as_numpy(tmp_scores)
U = unary_from_softmax(tmp_scores)
d.setUnaryEnergy(U)
d.addPairwiseGaussian(sxy=3, compat=3) # `compat` is the "strength" of this potential.
# Run inference for 100 iterations
Q_unary = d.inference(100)
# The Q is now the approximate posterior, we can get a MAP estimate using argmax.
map_soln_unary = np.argmax(Q_unary, axis=0)
# Unfortunately, the DenseCRF flattens everything, so get it back into picture form.
map_soln_unary = map_soln_unary.reshape((h,w))
conf = np.max(Q_unary, axis=0).reshape((h,w))
res = eval_ood_measure(conf, seg_label, cfg, mask=mask)
if res is not None:
auroc, aupr, fpr = res
aurocs.append(auroc); auprs.append(aupr), fprs.append(fpr)
else:
pass
torch.cuda.synchronize()
time_meter.update(time.perf_counter() - tic)
# calculate accuracy
acc, pix = accuracy(pred, seg_label)
intersection, union = intersectionAndUnion(pred, seg_label, cfg.DATASET.num_class)
acc_meter.update(acc, pix)
intersection_meter.update(intersection)
union_meter.update(union)
# visualization
if cfg.VAL.visualize:
visualize_result(
(batch_data['img_ori'], seg_label, batch_data['info']),
pred,
os.path.join(cfg.DIR, 'result')
)
pbar.update(1)
# summary
iou = intersection_meter.sum / (union_meter.sum + 1e-10)
for i, _iou in enumerate(iou):
print('class [{}], IoU: {:.4f}'.format(i, _iou))
print('[Eval Summary]:')
print('Mean IoU: {:.4f}, Accuracy: {:.2f}%, Inference Time: {:.4f}s'
.format(iou.mean(), acc_meter.average()*100, time_meter.average()))
print("mean auroc = ", np.mean(aurocs), "mean aupr = ", np.mean(auprs), " mean fpr = ", np.mean(fprs))
def main(cfg, gpu):
torch.cuda.set_device(gpu)
# Network Builders
net_encoder = ModelBuilder.build_encoder(
arch=cfg.MODEL.arch_encoder.lower(),
fc_dim=cfg.MODEL.fc_dim,
weights=cfg.MODEL.weights_encoder)
net_decoder = ModelBuilder.build_decoder(
arch=cfg.MODEL.arch_decoder.lower(),
fc_dim=cfg.MODEL.fc_dim,
num_class=cfg.DATASET.num_class,
weights=cfg.MODEL.weights_decoder,
use_softmax=True)
crit = nn.NLLLoss(ignore_index=-1)
segmentation_module = SegmentationModule(net_encoder, net_decoder, crit)
# Dataset and Loader
dataset_val = ValDataset(
cfg.DATASET.root_dataset,
cfg.DATASET.list_val,
cfg.DATASET)
loader_val = torch.utils.data.DataLoader(
dataset_val,
batch_size=cfg.VAL.batch_size,
shuffle=False,
collate_fn=user_scattered_collate,
num_workers=5,
drop_last=True)
segmentation_module.cuda()
# Main loop
evaluate(segmentation_module, loader_val, cfg, gpu)
print('Evaluation Done!')
if __name__ == '__main__':
assert LooseVersion(torch.__version__) >= LooseVersion('0.4.0'), \
'PyTorch>=0.4.0 is required'
parser = argparse.ArgumentParser(
description="PyTorch Semantic Segmentation Validation"
)
parser.add_argument(
"--cfg",
default="config/ade20k-resnet50dilated-ppm_deepsup.yaml",
metavar="FILE",
help="path to config file",
type=str,
)
parser.add_argument(
"--gpu",
default=0,
help="gpu to use"
)
parser.add_argument(
"--ood",
help="Choices are [msp, crf-gauss, crf, maxlogit, background]",
default="msp",
)
parser.add_argument(
"--exclude_back",
help="Whether to exclude the background class.",
action="store_true",
)
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
args = parser.parse_args()
ood = ["OOD.exclude_back", args.exclude_back, "OOD.ood", args.ood]
cfg.merge_from_file(args.cfg)
cfg.merge_from_list(ood)
cfg.merge_from_list(args.opts)
# cfg.freeze()
logger = setup_logger(distributed_rank=0) # TODO
logger.info("Loaded configuration file {}".format(args.cfg))
logger.info("Running with config:\n{}".format(cfg))
# absolute paths of model weights
cfg.MODEL.weights_encoder = os.path.join(
cfg.DIR, 'encoder_' + cfg.VAL.checkpoint)
cfg.MODEL.weights_decoder = os.path.join(
cfg.DIR, 'decoder_' + cfg.VAL.checkpoint)
assert os.path.exists(cfg.MODEL.weights_encoder) and \
os.path.exists(cfg.MODEL.weights_decoder), "checkpoint does not exitst!"
if not os.path.isdir(os.path.join(cfg.DIR, "result")):
os.makedirs(os.path.join(cfg.DIR, "result"))
main(cfg, args.gpu)