-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathmtn.py
414 lines (372 loc) · 17 KB
/
mtn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils.weight_norm import weight_norm
import math, copy, time
from torch.autograd import Variable
from data_utils import *
class EncoderDecoder(nn.Module):
def __init__(self, query_encoder, his_encoder, cap_encoder, vid_encoder, decoder, query_embed, his_embed, cap_embed, tgt_embed, generator, diff_encoder=False, auto_encoder_embed=None, auto_encoder_ft=None, auto_encoder_generator=None):
super(EncoderDecoder, self).__init__()
self.query_encoder = query_encoder
self.his_encoder = his_encoder
self.cap_encoder = cap_encoder
self.vid_encoder = vid_encoder
self.decoder = decoder
self.query_embed = query_embed
self.his_embed = his_embed
self.cap_embed = cap_embed
self.tgt_embed = tgt_embed
self.generator = generator
self.diff_encoder = diff_encoder
self.auto_encoder_embed = auto_encoder_embed
self.auto_encoder_ft=auto_encoder_ft
self.auto_encoder_generator=auto_encoder_generator
def forward(self, b):
encoded_query, encoded_vid_features, encoded_cap, encoded_his, auto_encoded_ft = self.encode(b.query, b.query_mask, b.his, b.his_mask, b.cap, b.cap_mask, b.fts, b.fts_mask)
return self.decode(encoded_vid_features, encoded_his, encoded_cap, encoded_query, b.fts_mask, b.his_mask, b.cap_mask, b.query_mask, b.trg, b.trg_mask, auto_encoded_ft)
def vid_encode(self, video_features, video_features_mask, encoded_query=None):
output = []
for i, ft in enumerate(video_features):
output.append(self.vid_encoder[i](ft))
return output
def encode(self, query, query_mask, his=None, his_mask=None, cap=None, cap_mask=None, vid=None, vid_mask=None):
if self.diff_encoder:
if self.auto_encoder_ft == 'caption' or self.auto_encoder_ft == 'summary':
ft = cap
elif self.auto_encoder_ft == 'query':
ft = query
if self.auto_encoder_embed is not None:
ae_encoded = []
for i in range(len(vid)):
ae_encoded.append(self.auto_encoder_embed[i](ft))
else:
ae_encoded = []
for i in range(len(vid)):
ae_encoded.append(self.query_embed(ft))
return self.query_encoder(self.query_embed(query), self.vid_encode(vid, vid_mask), self.query_embed(cap), self.query_embed(his), ae_encoded)
else:
output = self.query_encoder(self.query_embed(query), self.vid_encode(vid, vid_mask), self.query_embed(cap), self.query_embed(his))
output.append(None)
return output
def decode(self, encoded_vid_features, his_memory, cap_memory, query_memory, vid_features_mask, his_mask, cap_mask, query_mask, tgt, tgt_mask, auto_encoded_ft):
encoded_tgt = self.tgt_embed(tgt)
return self.decoder(encoded_vid_features, vid_features_mask, encoded_tgt, his_memory, his_mask, cap_memory, cap_mask, query_memory, query_mask, tgt_mask, auto_encoded_ft, self.auto_encoder_ft)
class Generator(nn.Module):
"Define standard linear + softmax generation step."
def __init__(self, d_model, vocab):
super(Generator, self).__init__()
self.proj = nn.Linear(d_model, vocab)
def forward(self, x):
return F.log_softmax(self.proj(x), dim=-1)
def clones(module, N):
"Produce N identical layers."
return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
class Encoder(nn.Module):
def __init__(self, size, nb_layers):
super(Encoder, self).__init__()
self.norm = nn.ModuleList()
self.nb_layers = nb_layers
for n in range(nb_layers):
self.norm.append(LayerNorm(size))
def forward(self, *seqs):
output = []
i=0
seq_i=0
while(True):
if isinstance(seqs[seq_i],list):
output_seq = []
for seq in seqs[seq_i]:
output_seq.append(self.norm[i](seq))
i+=1
output.append(output_seq)
seq_i+=1
else:
output.append(self.norm[i](seqs[seq_i]))
i+=1
seq_i+=1
if i==self.nb_layers:
break
return output
class LayerNorm(nn.Module):
"Construct a layernorm module"
def __init__(self, features, eps=1e-6):
super(LayerNorm, self).__init__()
self.a_2 = nn.Parameter(torch.ones(features))
self.b_2 = nn.Parameter(torch.zeros(features))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
return self.a_2 * (x - mean) / (std + self.eps) + self.b_2
class SublayerConnection(nn.Module):
"""
A residual connection followed by a layer norm
"""
def __init__(self, size, dropout):
super(SublayerConnection, self).__init__()
self.norm = LayerNorm(size)
self.dropout = nn.Dropout(dropout)
def forward(self, x, sublayer):
"Apply residual connection to any sublayer with the same size"
return x + self.dropout(sublayer(self.norm(x)))
def expand_forward(self, x, sublayer):
out = self.dropout(sublayer(self.norm(x)))
out = out.mean(1).unsqueeze(1).expand_as(x)
return x + out
def nosum_forward(self, x, sublayer):
return self.dropout(sublayer(self.norm(x)))
class EncoderLayer(nn.Module):
def __init__(self, size, self_attn, ff1, dropout):
super(EncoderLayer, self).__init__()
self.self_attn = self_attn
self.ff1 = ff1
self.sublayer = clones(SublayerConnection(size, dropout), 2)
self.size = size
def forward(self, seq, seq_mask):
seq = self.sublayer[0](seq, lambda seq: self.self_attn(seq, seq, seq, seq_mask))
return self.sublayer[1](seq, self.ff1)
class Decoder(nn.Module):
def __init__(self, layer, N, ft_sizes=None):
super(Decoder, self).__init__()
self.layers = clones(layer, N)
self.norm = LayerNorm(layer.size)
self.ae_norm = nn.ModuleList()
for ft_size in ft_sizes:
self.ae_norm.append(LayerNorm(layer.size))
def forward(self, vid_ft, vid_mask, x, his_memory, his_mask, cap_memory, cap_mask, query_memory, query_mask, tgt_mask, auto_encoded_ft, auto_encoded_features):
for layer in self.layers:
x, auto_encoded_ft = layer(x, cap_memory, cap_mask, his_memory, his_mask, query_memory, query_mask, tgt_mask, vid_ft, vid_mask, auto_encoded_ft, auto_encoded_features)
out_ae_ft = []
for i, ft in enumerate(auto_encoded_ft):
out_ae_ft.append(self.ae_norm[i](ft))
return self.norm(x), out_ae_ft
class DecoderLayer(nn.Module):
def __init__(self, size, self_attn, cap_attn, his_attn, q_attn, auto_encoder_self_attn, auto_encoder_vid_attn, auto_encoder_attn, feed_forward, auto_encoder_feed_forward, dropout):
super(DecoderLayer, self).__init__()
self.size = size
self.self_attn = self_attn
self.src_attn = q_attn
self.feed_forward = feed_forward
self.his_attn = his_attn
self.cap_attn = cap_attn
self.auto_encoder_attn = auto_encoder_attn
self.auto_encoder_self_attn = auto_encoder_self_attn
self.auto_encoder_vid_attn = auto_encoder_vid_attn
self.auto_encoder_feed_forward = auto_encoder_feed_forward
self.sublayer = clones(SublayerConnection(size, dropout), 5 + 4*len(auto_encoder_vid_attn))
def forward(self, x, cap_memory, cap_mask, his_memory, his_mask, q_memory, q_mask, tgt_mask, vid_fts, vid_mask, ae_fts, ae_features):
count = 0
x = self.sublayer[count](x, lambda x: self.self_attn(x, x, x, tgt_mask))
count += 1
x = self.sublayer[count](x, lambda x: self.his_attn(x, his_memory, his_memory, his_mask))
count += 1
if ae_features == 'caption' or ae_features == 'summary':
x = self.sublayer[count](x, lambda x: self.src_attn(x, q_memory, q_memory, q_mask))
count += 1
x = self.sublayer[count](x, lambda x: self.cap_attn(x, cap_memory, cap_memory, cap_mask))
count += 1
if ae_fts is None:
ae_fts = cap_memory
ae_mask = cap_mask
elif ae_features == 'query':
x = self.sublayer[count](x, lambda x: self.cap_attn(x, cap_memory, cap_memory, cap_mask))
count += 1
x = self.sublayer[count](x, lambda x: self.src_attn(x, q_memory, q_memory, q_mask))
count += 1
if ae_fts is None:
ae_fts = q_memory
ae_mask = q_mask
out_ae_fts = []
for i, vid_ft in enumerate(vid_fts):
if type(ae_fts) == list:
ae_ft = ae_fts[i]
else:
ae_ft = ae_fts
ae_ft = self.sublayer[count](ae_ft, lambda ae_ft: self.auto_encoder_self_attn[i](ae_ft, ae_ft, ae_ft, ae_mask))
count += 1
ae_ft = self.sublayer[count](ae_ft, lambda ae_ft: self.auto_encoder_vid_attn[i](ae_ft, vid_ft, vid_ft, vid_mask[i]))
count += 1
ae_ft = self.sublayer[count](ae_ft, self.auto_encoder_feed_forward[i])
count += 1
x = self.sublayer[count](x, lambda x: self.auto_encoder_attn[i](x, ae_ft, ae_ft, ae_mask))
count += 1
out_ae_fts.append(ae_ft)
return self.sublayer[count](x, self.feed_forward), out_ae_fts
def attention(query, key, value, mask=None, dropout=None):
"Compute 'Scaled Dot Product Attention'"
d_k = query.size(-1)
scores = torch.matmul(query, key.transpose(-2, -1)) \
/ math.sqrt(d_k)
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e9)
p_attn = F.softmax(scores, dim = -1)
if dropout is not None:
p_attn = dropout(p_attn)
return torch.matmul(p_attn, value), p_attn
class MultiHeadedAttention(nn.Module):
def __init__(self, h, d_model, d_in=-1, dropout=0.1):
"Take in model size and number of heads."
super(MultiHeadedAttention, self).__init__()
assert d_model % h == 0
# We assume d_v always equals d_k
self.d_k = d_model // h
self.h = h
if d_in < 0:
d_in = d_model
self.linears = clones(nn.Linear(d_in, d_model), 3)
self.linears.append(nn.Linear(d_model, d_in))
self.attn = None
self.dropout = nn.Dropout(p=dropout)
def forward(self, query, key, value, mask=None):
"Implements Figure 2"
if mask is not None:
# Same mask applied to all h heads.
mask = mask.unsqueeze(1)
nbatches = query.size(0)
# 1) Do all the linear projections in batch from d_model => h x d_k
query, key, value = \
[l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
for l, x in zip(self.linears, (query, key, value))]
# 2) Apply attention on all the projected vectors in batch.
x, self.attn = attention(query, key, value, mask=mask,
dropout=self.dropout)
# 3) "Concat" using a view and apply a final linear.
x = x.transpose(1, 2).contiguous() \
.view(nbatches, -1, self.h * self.d_k)
return self.linears[-1](x)
class PositionwiseFeedForward(nn.Module):
"Implements FFN equation."
def __init__(self, d_model, d_ff, dropout=0.1, d_out=-1):
super(PositionwiseFeedForward, self).__init__()
self.w_1 = nn.Linear(d_model, d_ff)
if d_out < 0:
d_out = d_model
self.w_2 = nn.Linear(d_ff, d_out)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
return self.w_2(self.dropout(F.relu(self.w_1(x))))
class Embeddings(nn.Module):
def __init__(self, d_model, vocab):
super(Embeddings, self).__init__()
self.lut = nn.Embedding(vocab, d_model)
self.d_model = d_model
def forward(self, x):
return self.lut(x) * math.sqrt(self.d_model)
class PositionalEncoding(nn.Module):
"Implement the PE function."
def __init__(self, d_model, dropout, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
# Compute the positional encodings once in log space.
pe = torch.zeros(max_len, d_model)
position = torch.arange(0., max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0., d_model, 2) *
-(math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + Variable(self.pe[:, :x.size(1)], requires_grad=False)
return self.dropout(x)
class StPositionalEncoding(nn.Module):
"Implement the PE function."
def __init__(self, d_model, dropout, max_len=50):
super(StPositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
# Compute the positional encodings once in log space.
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) *
-(math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x, x_st):
x = x + Variable(self.pe[:, x_st], requires_grad=False)
x = x.squeeze(0)
return self.dropout(x)
def make_model(src_vocab, tgt_vocab,
N=6, d_model=512, d_ff=2048, h=8, dropout=0.1,
separate_his_embed=False, separate_cap_embed=False,
ft_sizes=None,
diff_encoder=False, diff_embed=False, diff_gen=False,
auto_encoder_ft=None, auto_encoder_attn=False):
c = copy.deepcopy
attn = MultiHeadedAttention(h, d_model)
ff = PositionwiseFeedForward(d_model, d_ff, dropout)
position = PositionalEncoding(d_model, dropout)
generator=Generator(d_model, tgt_vocab)
query_embed = [Embeddings(d_model, src_vocab), c(position)]
tgt_embed = [Embeddings(d_model, tgt_vocab), c(position)]
query_embed = nn.Sequential(*query_embed)
tgt_embed = nn.Sequential(*tgt_embed)
if separate_his_embed:
his_embed = nn.Sequential(Embeddings(d_model, src_vocab), c(position))
else:
his_embed = None
if separate_cap_embed:
cap_embed = nn.Sequential(Embeddings(d_model, src_vocab), c(position))
else:
cap_embed = None
cap_encoder = None
vid_encoder = None
his_encoder = None
auto_encoder_generator = None
auto_encoder_embed = None
if True:
if diff_embed:
auto_encoder_embed = nn.ModuleList()
for ft_size in ft_sizes:
embed = [Embeddings(d_model, src_vocab), c(position)]
auto_encoder_embed.append(nn.Sequential(*embed))
else:
auto_encoder_embed = None
if diff_encoder:
query_encoder=Encoder(d_model, nb_layers=3 + 2*len(ft_sizes))
else:
query_encoder=Encoder(d_model, nb_layers=3 + len(ft_sizes))
self_attn = nn.ModuleList()
vid_attn = nn.ModuleList()
ae_ff = nn.ModuleList()
vid_encoder=nn.ModuleList()
auto_encoder_attn_ls = nn.ModuleList()
for ft_size in ft_sizes:
ff_layers = [nn.Linear(ft_size, d_model), nn.ReLU(), c(position)]
vid_encoder.append(nn.Sequential(*ff_layers))
self_attn.append(c(attn))
vid_attn.append(c(attn))
ae_ff.append(c(ff))
auto_encoder_attn_ls.append(c(attn))
if diff_gen:
auto_encoder_generator = nn.ModuleList()
for ft_size in ft_sizes:
auto_encoder_generator.append(c(generator))
else:
auto_encoder_generator = None
decoder = Decoder(DecoderLayer(d_model, c(attn), c(attn), c(attn), c(attn), self_attn, vid_attn, auto_encoder_attn_ls, c(ff), ae_ff, dropout), N, ft_sizes)
else: # query ony as source
query_encoder=Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N)
decoder = Decoder(DecoderLayer(d_model, c(attn), c(attn), c(ff), dropout), N)
model = EncoderDecoder(
query_encoder=query_encoder,
his_encoder=his_encoder,
cap_encoder=cap_encoder,
vid_encoder=vid_encoder,
decoder=decoder,
query_embed=query_embed,
his_embed=his_embed,
cap_embed=cap_embed,
tgt_embed=tgt_embed,
generator=generator,
auto_encoder_generator=auto_encoder_generator,
auto_encoder_embed=auto_encoder_embed,
diff_encoder=diff_encoder,
auto_encoder_ft=auto_encoder_ft)
for p in model.parameters():
if p.dim() > 1:
nn.init.xavier_uniform(p)
return model