-
Notifications
You must be signed in to change notification settings - Fork 2
/
Stats.cpp
49 lines (43 loc) · 1.55 KB
/
Stats.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
/**
* Metagenomics Canopy Clustering Implementation
*
* Copyright (C) 2013, 2014 Piotr Dworzynski (piotr@cbs.dtu.dk), Technical University of Denmark
*
* This file is part of Metagenomics Canopy Clustering Implementation.
*
* Metagenomics Canopy Clustering Implementation is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Metagenomics Canopy Clustering Implementation is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software. If not, see <http://www.gnu.org/licenses/>.
*/
#include "Stats.hpp"
PRECISIONT pearsoncorr_from_precomputed(int n, const PRECISIONT* v1, const PRECISIONT* v2) {
double sum = 0;
for (int i = 0; i < n; i++) {
sum += v1[i] * v2[i];
}
return (PRECISIONT)sum * n;
}
PRECISIONT pearsoncorr_from_precomputed(int n, unordered_map<int,PRECISIONT> & v1, unordered_map<int,PRECISIONT> & v2) {
double sum = 0;
for (auto x : v1) {
auto fnd = v2.find(x.first);
if (fnd != v2.end()) {
sum += x.second * fnd->second;
}
//else {
//do nothing
//sum += x.second * 0;
//}
//v2 only entries don't need to be checked, since these are 0...
}
return (PRECISIONT)sum * n;
}