-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_code.py
141 lines (115 loc) · 4.92 KB
/
main_code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import face_recognition
import cv2
import numpy as np
from livenessmodel import get_liveness_model
from common import get_users
import time
import datetime
import pandas as pd
df= pd.read_excel("attendance.xlsx")
font = cv2.FONT_HERSHEY_DUPLEX
def convert(date):
year= date[:4]
month= date[5:7]
day= date[8:]
date= day+"-"+month+"-"+year
return date
# Get the liveness network
model = get_liveness_model()
# load weights into new model
model.load_weights("model/model.h5")
print("Loaded model from disk")
# Read the users data and create face encodings
known_names, known_encods = get_users()
video_capture = cv2.VideoCapture(0)
video_capture.set(3, 640)
video_capture.set(4, 480)
# Initialize some variables
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True
input_vid = []
cond= True
flag_win= True
while (1):
# Grab a single frame of video
if len(input_vid) < 24:
ret, frame = video_capture.read()
liveimg = cv2.resize(frame, (100,100))
liveimg = cv2.cvtColor(liveimg, cv2.COLOR_BGR2GRAY)
input_vid.append(liveimg)
else:
ret, frame = video_capture.read()
liveimg = cv2.resize(frame, (100,100))
liveimg = cv2.cvtColor(liveimg, cv2.COLOR_BGR2GRAY)
input_vid.append(liveimg)
inp = np.array([input_vid[-24:]])
inp = inp/255
inp = inp.reshape(1,24,100,100,1)
pred = model.predict(inp)
input_vid = input_vid[-25:]
if pred[0][0]> .95:
# Resize frame of video to 1/4 size for faster face recognition processing
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
# Only process every other frame of video to save time
if process_this_frame:
# Find all the faces and face encodings in the current frame of video
face_locations = face_recognition.face_locations(small_frame)
face_encodings = face_recognition.face_encodings(small_frame, face_locations)
name = "Unknown"
face_names = []
for face_encoding in face_encodings:
for ii in range(len(known_encods)):
# See if the face is a match for the known face(s)
match = face_recognition.compare_faces([known_encods[ii]], face_encoding)
if match[0]:
name = known_names[ii]
face_names.append(name)
process_this_frame = not process_this_frame
unlock = False
for n in face_names:
if n != 'Unknown':
unlock=True
# Display the results
for (top, right, bottom, left), name in zip(face_locations, face_names):
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
top *= 4
right *= 4
bottom *= 4
left *= 4
# Draw a box around the face
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
# Draw a label with a name below the face
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
if unlock:
cv2.putText(frame, 'Marked present', (frame.shape[1]//2, frame.shape[0]//2), font, 1.0, (255, 255, 255), 1)
if flag_win:
cv2.imshow('Video', frame)
date= str(datetime.datetime.now())[:(str(datetime.datetime.now()).index(' '))+1]
time_now= str(datetime.datetime.now())[(str(datetime.datetime.now()).index(' '))+1:]
time_now= time_now[:8]
date= convert(date)
if cond:
new_row= {'name':name, 'date':date, 'time': time_now}
df= df.append(new_row, ignore_index=True)
df.to_excel("attendance.xlsx", index= False)
cond= False
else:
cv2.putText(frame, 'Can not recognise', (frame.shape[1]//2, frame.shape[0]//2), font, 1.0, (255, 255, 255), 1)
else:
cv2.putText(frame, 'INVALID', (frame.shape[1]//2, frame.shape[0]//2), font, 1.0, (255, 255, 255), 1)
# Display the liveness score in top left corner
cv2.putText(frame, str(pred[0][0]), (20, 20), font, 1.0, (255, 255, 0), 1)
# Display the resulting image
cv2.imshow('Video', frame)
# Hit 'q' on the keyboard to quit!
if cv2.waitKey(1) & 0xFF == ord('q'):
break
#Or hit space on the keyboard to quit!
if cv2.waitKey(1) & 0xFF == ord(' '):
break
# Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()