-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathwmt_preprocess.py
79 lines (64 loc) · 2.25 KB
/
wmt_preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import argparse
import collections
import io
import progressbar
import re
from utils import count_lines
split_pattern = re.compile(r'([.,!?"\':;)(])')
digit_pattern = re.compile(r'\d')
def split_sentence(s, use_lower):
if use_lower:
s = s.lower()
s = s.replace('\u2019', "'")
s = digit_pattern.sub('0', s)
words = []
for word in s.strip().split():
words.extend(split_pattern.split(word))
words = [w for w in words if w]
return words
def read_file(path, use_lower):
n_lines = count_lines(path)
bar = progressbar.ProgressBar()
with io.open(path, encoding='utf-8', errors='ignore') as f:
for line in bar(f, max_value=n_lines):
words = split_sentence(line, use_lower)
yield words
def preprocess_dataset(path, outpath, vocab_path=None, vocab_size=None,
use_lower=False):
token_count = 0
counts = collections.Counter()
with io.open(outpath, 'w', encoding='utf-8') as f:
for words in read_file(path, use_lower):
line = ' '.join(words)
f.write(line)
f.write('\n')
if vocab_path is not None:
for word in words:
counts[word] += 1
token_count += len(words)
print('number of tokens: %d' % token_count)
if vocab_path and vocab_size:
vocab = [word for (word, _) in counts.most_common(vocab_size)]
with io.open(vocab_path, 'w', encoding='utf-8') as f:
for word in vocab:
f.write(word)
f.write('\n')
def main(args):
preprocess_dataset(
args.INPUT,
args.OUTPUT,
vocab_path=args.vocab_file,
vocab_size=args.vocab_size,
use_lower=args.lower
)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('INPUT', help='path to input')
parser.add_argument('OUTPUT', help='path to input')
parser.add_argument('--vocab-file', help='vocabulary file to save')
parser.add_argument('--vocab-size', type=int, default=30000,
help='vocabulary file to save')
parser.add_argument('--lower', action='store_true',
help='use lower case')
args = parser.parse_args()
main(args)