forked from mistralai/mistral-inference
-
Notifications
You must be signed in to change notification settings - Fork 5
/
main.py
176 lines (144 loc) · 6.39 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
from mistral.cache import RotatingBufferCache
import logging
import torch
import fire
from typing import List
from pathlib import Path
from mistral.model import Transformer
from mistral.tokenizer import Tokenizer
def sample_top_p(probs: torch.Tensor, p: float):
assert 0 <= p <= 1
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
probs_sum = torch.cumsum(probs_sort, dim=-1)
mask = probs_sum - probs_sort > p
probs_sort[mask] = 0.0
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
next_token = torch.multinomial(probs_sort, num_samples=1)
return torch.gather(probs_idx, -1, next_token)
def sample(logits: torch.Tensor, temperature: float, top_p: float):
if temperature > 0:
probs = torch.softmax(logits / temperature, dim=-1)
next_token = sample_top_p(probs, top_p)
else:
next_token = torch.argmax(logits, dim=-1).unsqueeze(0)
return next_token.reshape(-1)
@torch.inference_mode()
def generate(prompts: List[str], model: Transformer, tokenizer: Tokenizer, *, max_tokens: int, temperature: float, chunk_size: int = None):
model = model.eval()
batch_size, vocabulary_size = len(prompts), model.args.vocab_size # Batch_Size, Vocabulary_Size
# Tokenize
encoded_prompts = [tokenizer.encode(prompt, bos=True) for prompt in prompts]
# Indicates the number of tokens in each prompt
prompts_sequence_lengths = [len(x) for x in encoded_prompts]
# Cache
# Indicates the size of the rotating cache
cache_window = max(prompts_sequence_lengths) + max_tokens
# If the cache window is larger than the sliding window, the cache window is set to the sliding window
if model.args.sliding_window is not None and cache_window > model.args.sliding_window:
cache_window = model.args.sliding_window
# Create the cache
cache = RotatingBufferCache(
model.n_local_layers,
model.args.max_batch_size,
cache_window,
model.args.n_kv_heads,
model.args.head_dim,
)
cache.to(device=model.device, dtype=model.dtype)
cache.reset()
# Bookkeeping
logprobs = [[] for _ in range(batch_size)]
last_token_prelogits = None
# One chunk if size not specified
max_prompt_len = max(prompts_sequence_lengths)
if chunk_size is None:
chunk_size = max_prompt_len
# Encode prompt by chunks
for s in range(0, max_prompt_len, chunk_size):
prompt_chunks = [p[s:s+chunk_size] for p in encoded_prompts] # Extract the tokens belonging to the current chunk
assert all(len(p) > 0 for p in prompt_chunks)
prelogits = model.forward(
torch.tensor(sum(prompt_chunks, []), device=model.device, dtype=torch.long), # Concatenate all the tokens in the current chunk (of all the prompts) in a single tensor
seqlens=[len(p) for p in prompt_chunks],
cache=cache
)
logits = torch.log_softmax(prelogits, dim=-1)
if last_token_prelogits is not None:
# Pass > 1
last_token_logits = torch.log_softmax(last_token_prelogits, dim=-1)
for i_seq in range(batch_size):
logprobs[i_seq].append(last_token_logits[i_seq, prompt_chunks[i_seq][0]].item())
offset = 0
for i_seq, sequence in enumerate(prompt_chunks):
logprobs[i_seq].extend([logits[offset + i, sequence[i + 1]].item() for i in range(len(sequence) - 1)])
offset += len(sequence)
last_token_prelogits = prelogits.index_select(0, torch.tensor([len(p) for p in prompt_chunks], device=prelogits.device).cumsum(dim=0) - 1)
assert last_token_prelogits.shape == (batch_size, vocabulary_size)
# decode
generated_tokens = []
assert last_token_prelogits is not None
for i_token in range(max_tokens):
next_token = sample(last_token_prelogits, temperature=temperature, top_p=0.8)
last_token_logits = torch.log_softmax(last_token_prelogits, dim=-1)
for i in range(batch_size):
logprobs[i].append(last_token_logits[i, next_token[i]].item())
generated_tokens.append(next_token[:, None])
last_token_prelogits = model.forward(next_token, seqlens=[1] * len(prompts), cache=cache)
assert last_token_prelogits.shape == (batch_size, vocabulary_size)
generated_words = []
if generated_tokens:
generated_tokens = torch.cat(generated_tokens, 1)
for i, x in enumerate(encoded_prompts):
generated_words.append(tokenizer.decode(x + generated_tokens[i].tolist()))
return generated_words, logprobs
def interactive(model_path: str, max_tokens: int = 35, temperature: float = 0.7, instruct: bool = False):
tokenizer = Tokenizer(str(Path(model_path) / "tokenizer.model"))
transformer = Transformer.from_folder(Path(model_path), max_batch_size=3)
while True:
prompt = input("Prompt: ")
if instruct:
prompt = f"[INST] {prompt} [/INST]"
res, _logprobs = generate(
[prompt],
transformer,
tokenizer,
max_tokens=max_tokens,
temperature=temperature,
)
print(res[0])
print("=====================")
def demo(
model_path: str, max_tokens: int = 35, temperature: float = 0, num_pipeline_ranks=1
):
if num_pipeline_ranks > 1:
torch.distributed.init_process_group()
torch.cuda.set_device(torch.distributed.get_rank())
should_print = torch.distributed.get_rank() == 0
else:
should_print = True
tokenizer = Tokenizer(str(Path(model_path) / "tokenizer.model"))
transformer = Transformer.from_folder(
Path(model_path), max_batch_size=3, num_pipeline_ranks=num_pipeline_ranks
)
res, _logprobs = generate(
[
"This is a test made by me with the help of an AI assistant. I also like to play with videogames. Can you recommend me one game to play with?",
"This is another great test",
"This is a third test, mistral AI is very good at testing. ",
],
transformer,
tokenizer,
max_tokens=max_tokens,
temperature=temperature
)
if should_print:
for x,l in zip(res, _logprobs):
print(x)
logging.debug('Logprobs: %s',l)
print("=====================")
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
fire.Fire({
"interactive": interactive,
"demo": demo,
})