forked from lemire/rollinghashcpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mersennetwister.cpp
277 lines (236 loc) · 6.63 KB
/
mersennetwister.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
#include "mersennetwister.h"
MTRand::MTRand( const uint32& oneSeed )
{
seed(oneSeed);
}
MTRand::MTRand( uint32 *const bigSeed, const uint32 seedLength )
{
seed(bigSeed,seedLength);
}
MTRand::MTRand()
{
seed();
}
double MTRand::rand()
{
return double(randInt()) * (1.0/4294967295.0);
}
double MTRand::rand( const double& n )
{
return rand() * n;
}
double MTRand::randExc()
{
return double(randInt()) * (1.0/4294967296.0);
}
double MTRand::randExc( const double& n )
{
return randExc() * n;
}
double MTRand::randDblExc()
{
return ( double(randInt()) + 0.5 ) * (1.0/4294967296.0);
}
double MTRand::randDblExc( const double& n )
{
return randDblExc() * n;
}
double MTRand::rand53()
{
uint32 a = randInt() >> 5, b = randInt() >> 6;
// by Isaku Wada
return static_cast<double>(static_cast<unsigned long long>(a) * 67108864 + b)
/ 9007199254740992.0;
}
double MTRand::randNorm( const double& mean, const double& variance )
{
// Return a real number from a normal (Gaussian) distribution with given
// mean and variance by Box-Muller method
double r = sqrt( -2.0 * log( 1.0-randDblExc()) ) * variance;
double phi = 2.0 * 3.14159265358979323846264338328 * randExc();
return mean + r * cos(phi);
}
MTRand::uint32 MTRand::randInt()
{
// Pull a 32-bit integer from the generator state
// Every other access function simply transforms the numbers extracted here
if( left == 0 ) reload();
--left;
uint32 s1;
s1 = *pNext++;
s1 ^= (s1 >> 11);
s1 ^= (s1 << 7) & 0x9d2c5680UL;
s1 ^= (s1 << 15) & 0xefc60000UL;
return ( s1 ^ (s1 >> 18) );
}
MTRand::uint32 MTRand::randInt( const uint32& n )
{
// Find which bits are used in n
// Optimized by Magnus Jonsson (magnus@smartelectronix.com)
uint32 used = n;
used |= used >> 1;
used |= used >> 2;
used |= used >> 4;
used |= used >> 8;
used |= used >> 16;
// Draw numbers until one is found in [0,n]
uint32 i;
do
i = randInt() & used; // toss unused bits to shorten search
while( i > n );
return i;
}
void MTRand::seed( const uint32 oneSeed )
{
// Seed the generator with a simple uint32
initialize(oneSeed);
reload();
}
void MTRand::seed( uint32 *const bigSeed, const uint32 seedLength )
{
// Seed the generator with an array of uint32's
// There are 2^19937-1 possible initial states. This function allows
// all of those to be accessed by providing at least 19937 bits (with a
// default seed length of N = 624 uint32's). Any bits above the lower 32
// in each element are discarded.
// Just call seed() if you want to get array from /dev/urandom
initialize(19650218UL);
int i = 1;
uint32 j = 0;
int k = static_cast<int>( static_cast<uint32>(N) > seedLength ? static_cast<uint32>(N) : seedLength );
for( ; k; --k )
{
state[i] =
state[i] ^ ( (state[i-1] ^ (state[i-1] >> 30)) * 1664525UL );
state[i] += ( bigSeed[j] & 0xffffffffUL ) + j;
state[i] &= 0xffffffffUL;
++i;
++j;
if( i >= N ) {
state[0] = state[N-1];
i = 1;
}
if( j >= seedLength ) j = 0;
}
for( k = N - 1; k; --k )
{
state[i] =
state[i] ^ ( (state[i-1] ^ (state[i-1] >> 30)) * 1566083941UL );
state[i] -= i;
state[i] &= 0xffffffffUL;
++i;
if( i >= N ) {
state[0] = state[N-1];
i = 1;
}
}
state[0] = 0x80000000UL; // MSB is 1, assuring non-zero initial array
reload();
}
void MTRand::seed()
{
// Seed the generator with an array from /dev/urandom if available
// Otherwise use a hash of time() and clock() values
// First try getting an array from /dev/urandom
FILE* urandom = fopen( "/dev/urandom", "rb" );
if( urandom )
{
uint32 bigSeed[N];
uint32 *s = bigSeed;
int i = N;
bool success = true;
while( success && i-- )
success = fread( s++, sizeof(uint32), 1, urandom );
fclose(urandom);
if( success ) {
seed( bigSeed, N );
return;
}
}
// Was not successful, so use time() and clock() instead
seed( hash( time(NULL), clock() ) );
}
void MTRand::initialize( const uint32 seed )
{
// Initialize generator state with seed
// See Knuth TAOCP Vol 2, 3rd Ed, p.106 for multiplier.
// In previous versions, most significant bits (MSBs) of the seed affect
// only MSBs of the state array. Modified 9 Jan 2002 by Makoto Matsumoto.
uint32 *s = state;
uint32 *r = state;
int i = 1;
*s++ = seed & 0xffffffffUL;
for( ; i < N; ++i )
{
*s++ = ( 1812433253UL * ( *r ^ (*r >> 30) ) + i ) & 0xffffffffUL;
r++;
}
}
void MTRand::reload()
{
// Generate N new values in state
// Made clearer and faster by Matthew Bellew (matthew.bellew@home.com)
uint32 *p = state;
int i;
for( i = N - M; i--; ++p )
*p = twist( p[M], p[0], p[1] );
for( i = M; --i; ++p )
*p = twist( p[M-N], p[0], p[1] );
*p = twist( p[M-N], p[0], state[0] );
left = N, pNext = state;
}
MTRand::uint32 MTRand::hash( time_t t, clock_t c )
{
// Get a uint32 from t and c
// Better than uint32(x) in case x is floating point in [0,1]
// Based on code by Lawrence Kirby (fred@genesis.demon.co.uk)
static uint32 differ = 0; // guarantee time-based seeds will change
uint32 h1 = 0;
unsigned char *p = reinterpret_cast<unsigned char *>( &t );
for( size_t i = 0; i < sizeof(t); ++i )
{
h1 *= UCHAR_MAX + 2U;
h1 += p[i];
}
uint32 h2 = 0;
p = reinterpret_cast<unsigned char *>( &c );
for( size_t j = 0; j < sizeof(c); ++j )
{
h2 *= UCHAR_MAX + 2U;
h2 += p[j];
}
return ( h1 + differ++ ) ^ h2;
}
void MTRand::save( uint32* saveArray ) const
{
uint32 *sa = saveArray;
const uint32 *s = state;
int i = N;
for( ; i--; *sa++ = *s++ ) {}
*sa = left;
}
void MTRand::load( uint32 *const loadArray )
{
uint32 *s = state;
uint32 *la = loadArray;
int i = N;
for( ; i--; *s++ = *la++ ) {}
left = static_cast<int>(*la);
pNext = &state[N-left];
}
std::ostream& operator<<( std::ostream& os, const MTRand& mtrand )
{
const MTRand::uint32 *s = mtrand.state;
int i = mtrand.N;
for( ; i--; os << *s++ << "\t" ) {}
return os << mtrand.left;
}
std::istream& operator>>( std::istream& is, MTRand& mtrand )
{
MTRand::uint32 *s = mtrand.state;
int i = mtrand.N;
for( ; i--; is >> *s++ ) {}
is >> mtrand.left;
mtrand.pNext = &mtrand.state[mtrand.N-mtrand.left];
return is;
}