-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlogo.py
359 lines (318 loc) · 12.9 KB
/
logo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
# -*- coding: utf-8 -*-
#
# K9's Movement Subsystem - Autonomous Motor Driver
#
# authored by Richard Hopkins March 2021
#
# Licensed under The Unlicense, so free for public domain use
#
# This program provides K9 with a stack of instructions for his movement
import time
import math
import sys
import argparse
sys.path.append('/home/pi/k9-chess-angular/python')
sim = False
# Wheel circumference is 0.436m, with 200 clicks per turn
# Each click is 0.002179m (assumes each wheel is 0.139m)
CLICK2METRES = 0.002179 # converts clicks to metres
WALKINGSPEED = 1.4 # top speed of robot in metres per second
TOPSPEED = int(WALKINGSPEED/CLICK2METRES) # calculate and store max velocity
ACCELERATION = int(TOPSPEED/5) # accelerate to top speed in 5s
HALF_WHEEL_GAP = 0.1011
TURNING_CIRCLE = 2*math.pi*HALF_WHEEL_GAP/CLICK2METRES # clicks in a full spin
#print("Turning circle:" + str(TURNING_CIRCLE))
M1_QPPS = 1987 # max speed of wheel in clicks per second
M2_QPPS = 1837
M1_P = 10.644 # Proportional element of feedback for PID controller
M2_P = 9.768
M1_I = 2.206 # Integral element of feedback for PID controller
M2_I = 2.294
M1_D = 0.0 # Derived element of feedback for PID controller
M2_D = 0.0
TARGET_POS_X = 1.0 # desired x stopping point from wheel centre
TARGET_POS_Y = 0.0 # desired y stopping point from wheel centre
CAM_POS_X = 0.0 # x position of camera from between wheel centre
CAM_POS_Y = 0.0 # y position of camera from between wheel centre
def main():
global sim
parser = argparse.ArgumentParser(description='Moves robot using logo commands.')
parser.add_argument('command',
choices=['arc','fd','bk','lt','rt','stop'],
help='movement command')
parser.add_argument('parameter',
type=float,
default=0.0,
nargs='?',
help='distance in metres or angle in radians')
parser.add_argument('radius',
type=float,
default=0.0,
nargs='?',
help='radius of arc in metres (arc only)')
parser.add_argument('-t', '--test',
action='store_true',
help='execute in simulation mode')
args = parser.parse_args()
sim = args.test
verb = args.command
object1 = args.parameter
object2 = args.radius
if sim:
print("Test mode active")
else:
init_rc()
if (verb == "arc"):
globals()[verb](object1, object2)
else:
globals()[verb](object1)
def motor_speed(m1_speed, m2_speed):
''' Make robot move based on joystick
'''
factor = min(M1_QPPS, M2_QPPS)
m1_click = int(m1_speed * factor)
m2_click = int(m2_speed * factor)
rc.SpeedAccelM1M2(address=rc_address,
accel=ACCELERATION,
speed1=m1_click,
speed2=m2_click)
def calc_destination(x_pos, y_pos):
''' Calculate destination relative to robot
'''
ret_x = x_pos + CAM_POS_X - TARGET_POS_X
ret_y = y_pos + CAM_POS_Y - TARGET_POS_Y
return ret_x, ret_y
def calc_circle_arc(x_pos, y_pos):
''' Calculate a circle arc based on an target position
'''
# following calculation only works for a 90 degree or less field of view
if x_pos == 0:
raise ValueError('Cannot calculate circle arc of infinite radius')
radius = (x_pos**2 + y_pos**2) / (2* x_pos)
extent = math.asin(y_pos/radius)
return radius, extent
def stop():
'''Lock motors to stop motion
'''
global rc
# print("Stopping")
if not sim:
rc.SpeedM1M2(address=rc_address, m1=0, m2=0)
#rc.SpeedAccelDistanceM1M2(address=rc_address,
# accel=int(ACCELERATION),
# speed1=0,
# distance1=0,
# speed2=0,
# distance2=0,
# buffer=int(1))
# print("Stop done")
def get_speed():
''' Returns speeds of motors
'''
global rc
m1_speed = rc.ReadSpeedM1(rc_address)
m2_speed = rc.ReadSpeedM2(rc_address)
return m1_speed, m2_speed
def motors_moving():
''' Detects that motors are moving
'''
m1_speed, m2_speed = get_speed()
return ((m1_speed[1] != 0) or (m2_speed[1] != 0))
def buffer_full():
''' Detects if moves have finished
'''
global rc
buffers = rc.ReadBuffers(rc_address)
return ((buffers[1] != 0x80) or (buffers[2] != 0x80))
def finished_move():
''' Detects that buffer is empty and motors are at rest
'''
return not(motors_moving() or buffer_full())
def calc_turn_modifier(radius):
'''Calculates a velocity modifier; based on the radius
of the turn. As the radius tends to zero (i.e. spinning on the spot),
then modifier will reduce velocity to 10% of normal.
As the radius increases, the allowed maximum speed will increase.
Arguments:
radius -- the radius of the turn being asked for in metres
'''
radius = abs(radius)
turn_modifier = 1 - (0.9/(radius+1))
print("logo: calc_turn_modifier: " + str(turn_modifier))
return turn_modifier
def calc_click_vel(clicks, turn_mod):
'''Calculates target velocity for motors
Arguments:
clicks -- a signed click distance
turn_mod -- a modifier based on radius of turn
'''
sign_modifier = 1.0
if (clicks < 0.0):
sign_modifier = -1.0
click_vel = math.sqrt(abs(float(2.0*clicks*ACCELERATION*turn_mod)))
if (click_vel > TOPSPEED*turn_mod):
click_vel = TOPSPEED*turn_mod
if (click_vel < 1.0):
click_vel = 1.0
print("logo: calc_click_vel: " + str(click_vel*sign_modifier))
return click_vel*sign_modifier
def calc_accel(velocity, distance):
'''Calculates desired constant acceleration
Arguments:
velocity -- the desired change in velocity
distance -- the distance to change the velocity over
'''
accel = int(abs((velocity**2.0)/(2.0*distance)))
return accel
def forward(distance):
'''Moves K9 forward by 'distance' metres
Arguments:
distance -- the distance to move in metres
'''
global rc
clicks = int(round(distance/CLICK2METRES))
click_vel = calc_click_vel(clicks=clicks, turn_mod=1)
accel = calc_accel(click_vel, clicks/2.0)
print("logo fd: clicks: " + str(clicks) + " velocity: " + str(click_vel))
if not sim:
rc.SpeedAccelDistanceM1M2(address=rc_address,
accel=accel,
speed1=int(round(click_vel)),
distance1=int(abs(clicks/2.0)),
speed2=int(round(click_vel)),
distance2=int(abs(clicks/2.0)),
buffer=1)
rc.SpeedAccelDistanceM1M2(address=rc_address,
accel=accel,
speed1=0,
distance1=int(abs(clicks/2.0)),
speed2=0,
distance2=int(abs(clicks/2.0)),
buffer=0)
fd = fwd = forwards = forward
def backward(distance):
'''Moves K9 backward by 'distance' metres
'''
forward(-1*distance)
back = bk = backwards = backward
def left(angle, fast = False):
'''Spins K9 by 'angle' radians
'''
global rc
fraction = angle / ( 2 * math.pi )
clicks = TURNING_CIRCLE * fraction
if not fast:
turn_modifier = calc_turn_modifier(radius = 0)
else:
turn_modifier = 1.0
click_vel = calc_click_vel(clicks=clicks, turn_mod=turn_modifier)
if not fast:
accel = int(abs(click_vel * click_vel / ( 2.0 * clicks / 2.0)))
else:
accel = ACCELERATION
if not sim:
rc.SpeedAccelDistanceM1M2(address=rc_address,
accel=accel,
speed1=int(round(-click_vel)),
distance1=abs(int(round(clicks/2.0))),
speed2=int(round(click_vel)),
distance2=abs(int(round(clicks/2.0))),
buffer=int(1))
rc.SpeedAccelDistanceM1M2(address=rc_address,
accel=accel,
speed1=int(0),
distance1=abs(int(round(clicks/2.0))),
speed2=int(0),
distance2=abs(int(round(clicks/2.0))),
buffer=int(0))
print("logo lt: speed=" + str(click_vel) + " distance=" + str(clicks) + "\n")
lt = left
def right(angle, fast=False):
'''Moves K9 right by 'angle' radians
'''
left( -1 * angle, fast = fast)
rt = right
def arc(radius, extent):
'''Moves K9 in a circle or arc
Arguments:
radius -- radius in metres
extent -- signed size of arc in radians e.g. -3.141 will move K9 in a
a 180 semi-circle to the right
'''
global rc
if extent > 0.0:
distance1 = int(abs(extent * (radius + HALF_WHEEL_GAP) / CLICK2METRES))
distance2 = int(abs(extent * (radius - HALF_WHEEL_GAP) / CLICK2METRES))
else:
distance1 = int(abs(extent * (radius - HALF_WHEEL_GAP) / CLICK2METRES))
distance2 = int(abs(extent * (radius + HALF_WHEEL_GAP) / CLICK2METRES))
turn_mod = calc_turn_modifier(radius)
click_vel1 = calc_click_vel(clicks=distance1, turn_mod=turn_mod)
click_vel2 = calc_click_vel(clicks=distance2, turn_mod=turn_mod)
accel1 = int(abs(click_vel1 * click_vel1 / ( 2.0 * distance1 / 2.0)))
accel2 = int(abs(click_vel2 * click_vel2 / ( 2.0 * distance2 / 2.0)))
accel = max(accel1,accel2)
if not sim:
rc.SpeedAccelDistanceM1M2(address=rc_address,
accel=accel,
speed1=int(round(click_vel1)),
distance1=int(round(distance1/2.0)),
speed2=int(round(click_vel2)),
distance2=int(round(distance2/2.0)),
buffer=int(1))
rc.SpeedAccelDistanceM1M2(address=rc_address,
accel=accel,
speed1=int(0),
distance1=int(round(distance1/2.0)),
speed2=int(0),
distance2=int(round(distance2/2.0)),
buffer=int(0))
print("logo arc: m1 speed=" + str(click_vel1) + " distance=" + str(distance1))
print("logo arc: m2 speed=" + str(click_vel2) + " distance=" + str(distance2) + "\n")
circle = arc
def init_rc():
global rc
global rc_address
# Initialise the roboclaw motorcontroller
print("logo: initialising roboclaw driver...")
from roboclaw_3 import Roboclaw
rc_address = 0x80
rc = Roboclaw("/dev/roboclaw", 115200)
rc.Open()
# Get roboclaw version to test if is attached
version = rc.ReadVersion(rc_address)
if version[0] is False:
print("logo init: roboclaw get version failed")
sys.exit()
else:
print("logo init:",repr(version[1]))
# Set motor controller variables to those required by K9
rc.SetM1VelocityPID(rc_address, M1_P, M1_I, M1_D, M1_QPPS)
rc.SetM2VelocityPID(rc_address, M2_P, M2_I, M2_D, M2_QPPS)
rc.SetMainVoltages(rc_address,240,292) # 24V min, 29.2V max
rc.SetPinFunctions(rc_address,2,0,0)
# Zero the motor encoders
rc.ResetEncoders(rc_address)
# Print Motor PID Settings
m1pid = rc.ReadM1VelocityPID(rc_address)
m2pid = rc.ReadM2VelocityPID(rc_address)
print("logo init: m1 p: " + str(m1pid[1]) + ", i:" + str(m1pid[2]) + ", d:" + str(m1pid[3]))
print("m2 p: " + str(m2pid[1]) + ", i:" + str(m2pid[2]) + ", d:" + str(m2pid[3]))
# Print Min and Max Main Battery Settings
minmaxv = rc.ReadMinMaxMainVoltages(rc_address) # get min max volts
print ("logo init: min main battery: " + str(int(minmaxv[1])/10.0) + "V")
print ("logo init: max main battery: " + str(int(minmaxv[2])/10.0) + "V")
# Print S3, S4 and S5 Modes
S3mode=['Default','E-Stop (latching)','E-Stop','Voltage Clamp','Undefined']
S4mode=['Disabled','E-Stop (latching)','E-Stop','Voltage Clamp','M1 Home']
S5mode=['Disabled','E-Stop (latching)','E-Stop','Voltage Clamp','M2 Home']
pinfunc = rc.ReadPinFunctions(rc_address)
print ("logo init: s3 pin: " + S3mode[pinfunc[1]])
print ("logo init: s4 pin: " + S4mode[pinfunc[2]])
print ("logo init: s5 pin: " + S5mode[pinfunc[3]])
print("logo init: roboclaw motor controller initialised...")
# if executed from the command line then execute arguments as functions
if __name__ == '__main__':
main()
else:
init_rc()