-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_ft.py
240 lines (204 loc) · 8.63 KB
/
train_ft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# python imports
import argparse
import os
import time
import datetime
from pprint import pprint
# torch imports
import torch
import torch.utils.data
from torch.distributed import init_process_group, destroy_process_group
from torch.utils.tensorboard import SummaryWriter
# our code
from libs.core import load_config
from libs.datasets import make_dataset, make_data_loader
from libs.modeling import make_meta_arch
from libs.utils import (train_one_epoch, save_checkpoint, make_optimizer, make_scheduler, fix_random_seed, ModelEma)
from libs.utils.train_utils import valid_one_epoch_loss
from libs.utils.model_utils import count_parameters
################################################################################
def main(args):
"""main function that handles training / inference"""
"""1. setup parameters / folders"""
init_process_group(backend="nccl")
# parse args
args.start_epoch = 0
if os.path.isfile(args.config):
cfg = load_config(args.config)
else:
raise ValueError("Config file does not exist.")
if not os.path.exists(cfg['output_folder']):
os.mkdir(cfg['output_folder'])
cfg_filename = os.path.basename(args.config).replace('.yaml', '')
if len(args.output) == 0:
ts = datetime.datetime.fromtimestamp(int(time.time()))
ckpt_folder = os.path.join(
cfg['output_folder'], cfg_filename + '_' + str(ts))
else:
ckpt_folder = os.path.join(
cfg['output_folder'], cfg_filename + '_' + str(args.output))
if int(os.environ["LOCAL_RANK"]) == 0:
pprint(cfg)
os.makedirs(ckpt_folder, exist_ok=True)
# tensorboard writer
tb_writer = SummaryWriter(os.path.join(ckpt_folder, 'logs'))
# fix the random seeds (this will fix everything)
rng_generator = fix_random_seed(cfg['init_rand_seed'], include_cuda=True)
# re-scale learning rate / # workers based on number of GPUs
cfg['opt']["learning_rate"] *= torch.cuda.device_count()
print(cfg['opt']["learning_rate"])
# cfg['loader']['num_workers'] *= torch.cuda.device_count()
"""2. create dataset / dataloader"""
train_dataset = make_dataset(
cfg['dataset_name'], True, cfg['train_split'], **cfg['dataset']
)
# data loaders
train_loader = make_data_loader(
train_dataset, True, rng_generator, **cfg['loader'])
val_dataset = make_dataset(
cfg['dataset_name'], False, cfg['val_split'], **cfg['dataset']
)
# set bs = 1, and disable shuffle
val_loader = make_data_loader(
val_dataset, False, None, **cfg['loader']
)
"""3. create model, optimizer, and scheduler"""
# model
model = make_meta_arch(cfg['model_name'], **cfg['model'])
if int(os.environ["LOCAL_RANK"]) == 0:
print(model)
count_parameters(model)
# enable model EMA
# print("Using model EMA ...")
model_ema = ModelEma(model)
gpu_id = int(os.environ["LOCAL_RANK"])
model = model.to(gpu_id)
# model = DDP(model, device_ids=[gpu_id])
if model_ema is not None:
model_ema = model_ema.to(gpu_id)
# optimizer
if cfg['opt']["backbone_lr_weight"] == 1:
optimizer = make_optimizer(model, cfg['opt'])
else:
optimizer = make_optimizer(model, cfg['opt'], head_backbone_group=True)
# optimizer = make_optimizer(model, cfg['opt'],head_backbone_group=True)
# schedule
num_iters_per_epoch = len(train_loader)
scheduler = make_scheduler(optimizer, cfg['opt'], num_iters_per_epoch)
"""4. Resume from model / Misc"""
# resume from a checkpoint?
if args.resume:
if os.path.isfile(args.resume):
# load ckpt, reset epoch / best rmse
checkpoint = torch.load(args.resume, map_location=lambda storage, loc: storage.cuda(gpu_id))
pretrained_dict = checkpoint['state_dict']
pretrained_dict = {k: v for k, v in pretrained_dict.items() if not "head" in k}
model.load_state_dict(pretrained_dict, strict=False)
print("initialize head parameters from scratch")
if args.resume_from_pretrain:
args.start_epoch = 0
else:
args.start_epoch = checkpoint['epoch'] + 1
try:
model_ema.load_state_dict(checkpoint['state_dict_ema'])
except:
pass
# also load the optimizer / scheduler if necessary
optimizer.load_state_dict(checkpoint['optimizer'])
scheduler.load_state_dict(checkpoint['scheduler'])
print("=> loaded checkpoint '{:s}' (epoch {:d})".format(
args.resume, checkpoint['epoch']
))
del checkpoint
else:
print("=> no checkpoint found at '{}'".format(args.resume))
return
# save the current config
with open(os.path.join(ckpt_folder, 'config.txt'), 'w') as fid:
pprint(cfg, stream=fid)
fid.flush()
"""4. training / validation loop"""
print("\nStart training model {:s} ...".format(cfg['model_name']))
# start training
max_epochs = cfg['opt'].get(
'early_stop_epochs',
cfg['opt']['epochs'] + cfg['opt']['warmup_epochs']
)
score_writer = open(os.path.join(ckpt_folder, "eval_results.txt"), mode="w", encoding="utf-8")
for epoch in range(args.start_epoch, max_epochs):
# train for one epoch
train_loader.sampler.set_epoch(epoch)
train_one_epoch(
train_loader,
model,
optimizer,
scheduler,
epoch,
model_ema=model_ema,
clip_grad_l2norm=cfg['train_cfg']['clip_grad_l2norm'],
tb_writer=tb_writer,
print_freq=args.print_freq
)
# save ckpt once in a while
if (
(epoch == max_epochs - 1) or
(
(args.ckpt_freq > 0) and
(epoch % args.ckpt_freq == 0)
)
):
print("\nStart testing model {:s} ...".format(cfg['model_name']))
start = time.time()
losses_tracker = valid_one_epoch_loss(
val_loader,
model,
epoch,
tb_writer=tb_writer,
print_freq=args.print_freq / 2
)
end = time.time()
print("All done! Total time: {:0.2f} sec".format(end - start))
# print("losses_tracker: ", losses_tracker)
score_str = ""
for key, value in losses_tracker.items():
score_str += '\t{:s} {:.2f} ({:.2f})'.format(
key, value.val, value.avg
)
score_writer.write(score_str)
score_writer.flush()
if int(os.environ["LOCAL_RANK"]) == 0:
save_states = {'epoch': epoch,
'state_dict': model.state_dict(),
'scheduler': scheduler.state_dict(),
'optimizer': optimizer.state_dict(),
'state_dict_ema': model_ema.module.state_dict(),
}
save_checkpoint(
save_states,
False,
file_folder=ckpt_folder,
file_name='epoch_{:03d}.pth.tar'.format(epoch)
)
# wrap up
tb_writer.close()
if int(os.environ["LOCAL_RANK"]) == 0:
destroy_process_group()
################################################################################
if __name__ == '__main__':
"""Entry Point"""
# the arg parser
parser = argparse.ArgumentParser(
description='Train a point-based transformer for action localization')
parser.add_argument('config', metavar='DIR',
help='path to a config file')
parser.add_argument('-p', '--print-freq', default=100, type=int,
help='print frequency (default: 10 iterations)')
parser.add_argument('-c', '--ckpt-freq', default=2, type=int,
help='checkpoint frequency (default: every 5 epochs)')
parser.add_argument('--output', default='./ckpt', type=str,
help='name of exp folder (default: none)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to a checkpoint (default: none)')
parser.add_argument('--resume_from_pretrain', default=False, type=bool)
args = parser.parse_args()
main(args)