-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain_speech_commands.py
380 lines (335 loc) · 16.2 KB
/
train_speech_commands.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
import argparse
import random
import warnings
import os
try:
import resource
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
resource.setrlimit(resource.RLIMIT_NOFILE, (2048, rlimit[1]))
except:
print('no resource')
# sudo sh -c "ulimit -n 65535 && exec su $LOGNAME"
import torch
import torch.backends.cudnn as cudnn
import torch.multiprocessing as mp
from train_valid_test import train_epoch, valid_epoch, \
create_lr_schedule, create_optimizer, get_model, create_dataloader
def parse_args():
"""
Parse input arguments
"""
# general args
parser = argparse.ArgumentParser(description='Training')
parser.add_argument('--saveroot',
help='set root folder for log and checkpoint',
type=str,
default='save_models')
parser.add_argument('--dataroot',
help='set root folder for dataset',
type=str,
default='/mnt/data/sata/lin/datasets/SpeechCommands')
parser.add_argument('--checkpoint',
help='choose a checkpoint to resume',
type=str,
default=None)
parser.add_argument(
'--test',
action='store_true',
help='test accuracy with input checkpoint',
)
# model args
parser.add_argument('--n_mels',
type=int,
default=32,
help='mel feature size')
parser.add_argument(
'--model',
type=str,
default='Dfsmn')
parser.add_argument('--dfsmn_with_bn',
action='store_true',
help='use BatchNorm for Dfsmn model')
parser.add_argument('--num_layer',
type=int,
default=8,
help='num_layer for Dfsmn model')
parser.add_argument('--frondend_channels',
type=int,
default=16,
help='frondend_channels for Dfsmn model')
parser.add_argument('--frondend_kernel_size',
type=int,
default=5,
help='frondend_kernel_size for Dfsmn model')
parser.add_argument('--hidden_size',
type=int,
default=256,
help='hidden_size for Dfsmn model')
parser.add_argument('--backbone_memory_size',
type=int,
default=128,
help='backbone_memory_size for Dfsmn model')
parser.add_argument('--left_kernel_size',
type=int,
default=2,
help='left_kernel_size for Dfsmn model')
parser.add_argument('--right_kernel_size',
type=int,
default=2,
help='right_kernel_size for Dfsmn model')
# args for training hyper parameters
parser.add_argument("--epoch", type=int, default=300, help='total epochs')
parser.add_argument("--batch-size", type=int, default=96, help='batch size')
parser.add_argument("--lr", type=float, default=1e-3, help='learning rate')
parser.add_argument("--lr-scheduler",
choices=['plateau', 'step', 'cosin'],
default='cosin',
help='method to adjust learning rate')
parser.add_argument("--weight-decay",
type=float,
default=1e-2,
help='weight decay')
parser.add_argument(
"--lr-scheduler-patience",
type=int,
default=5,
help='lr scheduler plateau: Number of epochs with no improvement '
'after which learning rate will be reduced')
parser.add_argument(
"--lr-scheduler-stepsize",
type=int,
default=5,
help='lr scheduler step: number of epochs of learning rate decay.')
parser.add_argument(
"--lr-scheduler-gamma",
type=float,
default=0.1,
help='learning rate is multiplied by the gamma to decrease it')
parser.add_argument("--optim",
choices=['sgd', 'adam'],
default='sgd',
help='choices of optimization algorithms')
parser.add_argument(
"--label_smoothing",
type=float,
default=0,
help='label_smoothing (float, optional): A float in [0.0, 1.0].')
parser.add_argument('--gpu', default=None, type=int, help='GPU id to use.')
parser.add_argument('--seed',
default=None,
type=int,
help='seed for initializing training. ')
# args for distill/thinnable
parser.add_argument('--num_classes', type=int, default=12, choices=[12, 20, 35], help='num_classes for dataset')
parser.add_argument('--version', default="speech_commands_v0.01", choices=["speech_commands_v0.01", "speech_commands_v0.02"], type=str, help='dataset version')
parser.add_argument('--thin_n', type=int, default=3, choices=[1, 2, 3, 4], help='ways for BiDfsmn_thinnable')
parser.add_argument("--distill", action='store_true', help='disitll')
parser.add_argument("--distill_conv", action='store_true', help='disitll conv1d and conv2d')
parser.add_argument("--distill_alpha", type=float, default=0, help='disitll alpha.')
parser.add_argument("--teacher_model", choices=['Vgg19Bn', 'Mobilenetv1', 'Mobilenetv2', 'BCResNet', 'Dfsmn', 'BiDfsmn', 'BiDfsmn_thinnable', 'BiDfsmn_thinnable_pre', 'fsmn'], type=str, default='Dfsmn', help='teacher model')
parser.add_argument('--teacher_model_checkpoint', type=str, help='teacher pretrained model path: saveroot + teacher_model_checkpoint')
parser.add_argument('--pretrained', action='store_true', help='load the pre-trained teacher model')
parser.add_argument("--select_pass", type=str, default='no', help='high-pass or low-pass for wavelet.')
parser.add_argument("--J", type=int, default=1, help='scale of wavelet.')
parser.add_argument("--method", type=str, default='no', help='bi method.')
parser.add_argument("--bits", type=int, default=1, help='bi method.')
parser.add_argument("--mse", action='store_true', help='mse')
parsed_args = parser.parse_args()
return parsed_args
def test_speech_commands(configs, gpu_id=None, model=None):
if model == None:
model = get_model(configs.model,
in_channels=1,
**(vars(configs)))
print(model)
nparams = sum(p.numel() for p in model.parameters() if p.requires_grad)
names_params = {
n: p.numel() * 1e-6
for n, p in model.named_parameters() if p.requires_grad
}
sorted_names_params = sorted(names_params.items(),
key=lambda kv: kv[1],
reverse=True)
print(sorted_names_params)
print('create model: {}, with {} M Params(With BN param)'.format(
configs.model, nparams * 1e-6))
if configs.checkpoint is None:
raise RuntimeError('test mode must provider checkpoint')
chpk = torch.load(configs.checkpoint)
model.load_state_dict(chpk['state_dict'])
if gpu_id is not None:
model.cuda(gpu_id)
dataloader_test = create_dataloader('testing',
configs,
use_gpu=gpu_id is not None,
version=configs.version)
criterion = torch.nn.CrossEntropyLoss()
valid_loss, accuracy = valid_epoch(model, criterion, dataloader_test,
0, gpu_id is not None, 10)
if not isinstance(accuracy, list):
accuracy = [accuracy]
print('checkpoint: {}, loss: {}, accuracy: {}'.format(
configs.checkpoint, valid_loss, ['%.4f%%' % (x * 100) for x in accuracy]))
def train_speech_commands(configs, gpu_id=None):
best_accuracy = 0
best_accuracys = None
epoch = 0
use_gpu = torch.cuda.is_available()
if gpu_id is not None:
torch.cuda.set_device(gpu_id)
model = get_model(configs.model,
in_channels=1,
**(vars(configs)))
print(model)
nparams = sum(p.numel() for p in model.parameters() if p.requires_grad)
names_params = {
n: p.numel() * 1e-6
for n, p in model.named_parameters() if p.requires_grad
}
sorted_names_params = sorted(names_params.items(),
key=lambda kv: kv[1],
reverse=True)
print(sorted_names_params)
print('create model: {}, with {} M Params(With BN param)'.format(
configs.model, nparams * 1e-6))
teacher_model = None
if configs.distill:
teacher_model = get_model(configs.teacher_model,
in_channels=1,
teacher=True,
**(vars(configs)))
print('teacher_model !!!!!!!')
print(teacher_model)
chpk = torch.load(os.path.join(configs.saveroot, configs.teacher_model_checkpoint), map_location='cpu')
teacher_model.load_state_dict(chpk['state_dict'])
if configs.pretrained:
chpk = torch.load(os.path.join(configs.saveroot, configs.teacher_model_checkpoint), map_location='cpu')
model.load_state_dict(chpk['state_dict'], strict=False)
criterion = torch.nn.CrossEntropyLoss()
optimizer = create_optimizer(configs, model)
if configs.checkpoint is not None:
chpk = torch.load(configs.checkpoint, map_location='cpu')
best_accuracy = chpk['accuracy']
epoch = chpk['epoch']
model.load_state_dict(chpk['state_dict'])
optimizer.load_state_dict(chpk['optimizer'])
lr_scheduler = create_lr_schedule(configs, optimizer)
dataloader_train = create_dataloader('training', configs, use_gpu, version=configs.version)
dataloader_valid = create_dataloader('validation', configs, use_gpu, version=configs.version)
if gpu_id is not None:
model = model.cuda(gpu_id)
if teacher_model != None:
teacher_model = teacher_model.cuda(gpu_id)
# train
for cur_epoch in range(epoch, configs.epoch):
print("runing on epoch: {}, learning_rate: {}, lr: {}, wd:{}".format(
cur_epoch, optimizer.param_groups[0]['lr'], configs.lr, configs.weight_decay, ), flush=True)
green = lambda x: '\033[32m' + x + '\033[0m'
print(green('{}, v{}-{}, {}, lr={}, wd={}, alpha={}'.format(args.method, args.version[-1:], args.num_classes, args.optim, args.lr, args.weight_decay, args.distill_alpha)))
distill_conv = True if configs.distill_conv else False
train_loss = train_epoch(model,
teacher_model,
optimizer,
criterion,
dataloader_train,
epoch=cur_epoch,
with_gpu=use_gpu,
log_iter=10,
distill_alpha=configs.distill_alpha,
distill_conv=distill_conv,
select_pass=configs.select_pass,
J=configs.J,
num_classes=configs.num_classes,
r2b=not configs.mse)
valid_loss, accuracy = valid_epoch(model, criterion, dataloader_valid,
cur_epoch, use_gpu, 10)
# valid_loss, accuracy = 0, 0
if configs.lr_scheduler == 'plateau':
lr_scheduler.step(metrics=valid_loss)
else:
lr_scheduler.step()
if not isinstance(accuracy, list):
accuracy = [accuracy]
if best_accuracys == None:
best_accuracys = accuracy
avg_accuracy = accuracy[0]
if avg_accuracy > best_accuracy and (len(accuracy) == 1 or (min([x - y for x, y in zip(accuracy[:-1], accuracy[1:])]) > 0)):
best_accuracy = avg_accuracy
best_accuracys = accuracy
print("Got better checkpointer, epoch: {}, accuracy: {}, valid loss: {}"
.format(cur_epoch, best_accuracy, valid_loss))
checkpoint = {
'epoch': cur_epoch,
'state_dict': model.cpu().state_dict(),
'accuracy': best_accuracy,
'optimizer': optimizer.state_dict(),
}
pth_name = '{}_{}_lr_{}_wd_{}_lrscheudle_{}_v{}_{}'.format(
configs.model, configs.method, configs.lr, configs.weight_decay,
configs.lr_scheduler, int(configs.version[-1:]), int(configs.num_classes))
if configs.distill:
if configs.distill_conv:
pth_name = pth_name + '_distill_conv_{}'.format(configs.distill_alpha)
else:
pth_name = pth_name + '_distill_{}'.format(configs.distill_alpha)
if configs.select_pass != 'no':
pth_name = pth_name + '_' + configs.select_pass + '_J_{}'.format(configs.J)
pth_name = pth_name + '_best.pth'
best_checkpoint_path = os.path.join(
configs.saveroot,
pth_name)
torch.save(checkpoint, best_checkpoint_path)
configs.checkpoint = best_checkpoint_path
print('train loss: ', train_loss,
', valid: best_accuracy: ', best_accuracy,
', cur_accuracy: ', ['%.4f%%' % (x * 100) for x in accuracy],
', best_accuracys', ['%.4f%%' % (x * 100) for x in best_accuracys],
', valid loss: ', valid_loss)
checkpoint = {
'epoch': cur_epoch,
'state_dict': model.cpu().state_dict(),
'accuracy': accuracy[0],
'optimizer': optimizer.state_dict(),
}
pth_name = '{}_{}_small_lr_{}_wd_{}_lrscheudle_{}_v{}_{}'.format(
configs.model, configs.method, configs.lr, configs.weight_decay,
configs.lr_scheduler, int(configs.version[-1:]), int(configs.num_classes))
if configs.distill:
if configs.distill_conv:
pth_name = pth_name + '_distill_conv_{}'.format(configs.distill_alpha)
else:
pth_name = pth_name + '_distill_{}'.format(configs.distill_alpha)
if configs.select_pass != 'no':
pth_name = pth_name + '_' + configs.select_pass + '_J_{}'.format(configs.J)
pth_name = pth_name + '_last.pth'
last_checkpoint_path = os.path.join(
configs.saveroot,
pth_name)
torch.save(checkpoint, last_checkpoint_path)
test_speech_commands(configs, gpu_id)
if __name__ == "__main__":
with mp.Pool(40) as pool:
# mp.set_start_method('spawn')
args = parse_args()
assert((args.distill and args.distill_alpha != 0) or (args.distill_alpha == 0 and not args.distill))
if args.test:
test_speech_commands(args, args.gpu)
else:
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
if args.gpu is not None:
warnings.warn(
'You have chosen a specific GPU. This will completely '
'disable data parallelism.')
# build model
os.makedirs(args.saveroot, exist_ok=True)
train_speech_commands(args, gpu_id=args.gpu)
green = lambda x: '\033[32m' + x + '\033[0m'
print(green('{}, v{}-{}, {}, lr={}, wd={}, alpha={}'.format(args.method, args.version[-1:], args.num_classes, args.optim, args.lr, args.weight_decay, args.distill_alpha)))