這個範例的主要目的
- 使用iris 鳶尾花資料集
- 測試不同分類器對於涵蓋特定範圍之資料集,分類為那一種鳶尾花的機率
- 例如:sepal length 為 4cm 而 sepal width 為 3cm時被分類為 versicolor的機率
- 首先先匯入iris 鳶尾花資料集,使用
iris = datasets.load_iris()
將資料存入 - 準備X (特徵資料) 以及 y (目標資料),僅使用兩個特徵方便視覺呈現
import matplotlib.pyplot as plt
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn import datasets
iris = datasets.load_iris()
X = iris.data[:, 0:2] # 僅使用前兩個特徵,方便視覺化呈現
y = iris.target
n_features = X.shape[1]
iris
為一個dict型別資料,我們可以用以下指令來看一下資料的內容。
for key,value in iris.items() :
try:
print (key,value.shape)
except:
print (key)
顯示 | 說明 |
---|---|
('target_names', (3L,)) | 共有三種鳶尾花 setosa, versicolor, virginica |
('data', (150L, 4L)) | 有150筆資料,共四種特徵 |
('target', (150L,)) | 這150筆資料各是那一種鳶尾花 |
DESCR | 資料之描述 |
feature_names | 四個特徵代表的意義 |
這個範例選擇了四種分類器,存入一個dict資料中,分別為:
- L1 logistic
- L2 logistic (OvR)
- Linear SVC
- L2 logistic (Multinomial)
其中LogisticRegression
並不適合拿來做多目標的分類器,我們可以用結果圖的分類機率來觀察。
C = 1.0
# Create different classifiers. The logistic regression cannot do
# multiclass out of the box.
classifiers = {'L1 logistic': LogisticRegression(C=C, penalty='l1'),
'L2 logistic (OvR)': LogisticRegression(C=C, penalty='l2'),
'Linear SVC': SVC(kernel='linear', C=C, probability=True,
random_state=0),
'L2 logistic (Multinomial)': LogisticRegression(
C=C, solver='lbfgs', multi_class='multinomial'
)}
n_classifiers = len(classifiers)
而接下來為了產生一個包含絕大部份可能的測試矩陣,我們會用到以下指令。
np.linspace(起始, 終止, 數量)
目的為產生等間隔之數據,例如print(np.linspace(1,3,3))
的結果為[ 1. 2. 3.]
,而print(np.linspace(1,3,5))
的結果為[ 1. 1.5 2. 2.5 3. ]
np.meshgrid(xx,yy)
則用來產生網格狀座標。numpy.c_
為numpy特殊物件,能協助將numpy 陣列連接起來,將程式簡化後,我們用以下範例展示相關函式用法。
xx, yy = np.meshgrid(np.linspace(1,3,3), np.linspace(4,6,3).T)
Xfull = np.c_[xx.ravel(), yy.ravel()]
print('xx= \n%s\n' % xx)
print('yy= \n%s\n' % yy)
print('xx.ravel()= %s\n' % xx.ravel())
print('Xfull= \n%s' % Xfull)
結果顯示如下,我們可以看出Xfull模擬出了一個類似特徵矩陣X, 具備有9筆資料,這九筆資料重現了xx (3種數值變化)及yy(3種數值變化)的所有排列組合。
xx=
[[ 1. 2. 3.]
[ 1. 2. 3.]
[ 1. 2. 3.]]
yy=
[[ 4. 4. 4.]
[ 5. 5. 5.]
[ 6. 6. 6.]]
xx.ravel()= [ 1. 2. 3. 1. 2. 3. 1. 2. 3.]
Xfull=
[[ 1. 4.]
[ 2. 4.]
[ 3. 4.]
[ 1. 5.]
[ 2. 5.]
[ 3. 5.]
[ 1. 6.]
[ 2. 6.]
[ 3. 6.]]
而下面這段程式碼的主要用意,在產生一個網格矩陣,其中xx,yy分別代表著iris
資料集的第一及第二個特徵。xx 是39之間的100個連續數字,而yy是15之間的100個連續數字。用np.meshgrid(xx,yy)
及np.c_
產生出Xfull特徵矩陣,10,000筆資料包含了兩個特徵的所有排列組合。
plt.figure(figsize=(3 * 2, n_classifiers * 2))
plt.subplots_adjust(bottom=.2, top=.95)
xx = np.linspace(3, 9, 100)
yy = np.linspace(1, 5, 100).T
xx, yy = np.meshgrid(xx, yy)
Xfull = np.c_[xx.ravel(), yy.ravel()]
接下來的動作
- 用迴圈輪過所有的分類器,並計算顯示分類成功率
- 將
Xfull
(10000x2矩陣)傳入classifier.predict_proba()
得到probas
(10000x3矩陣)。這裏的probas
矩陣是10000種不同的特徵排列組合所形成的數據,被分類到三種iris 鳶尾花的可能性。 - 利用
reshape((100,100))
將10000筆資料排列成二維矩陣,並將機率用影像的方式呈現出來
#若在ipython notebook (Jupyter) 裏執行,則可以將下列這行的井號移除
%matplotlib inline
#原範例沒有下列這行,這是為了讓圖形顯示更漂亮而新增的
fig = plt.figure(figsize=(12,12), dpi=300)
for index, (name, classifier) in enumerate(classifiers.items()):
#訓練並計算分類成功率
#然而此範例訓練跟測試用相同資料集,並不符合實際狀況。
#建議採用cross_validation的方式才能較正確評估
classifier.fit(X, y)
y_pred = classifier.predict(X)
classif_rate = np.mean(y_pred.ravel() == y.ravel()) * 100
print("classif_rate for %s : %f " % (name, classif_rate))
# View probabilities=
probas = classifier.predict_proba(Xfull)
n_classes = np.unique(y_pred).size
for k in range(n_classes):
plt.subplot(n_classifiers, n_classes, index * n_classes + k + 1)
plt.title("Class %d" % k)
if k == 0:
plt.ylabel(name)
imshow_handle = plt.imshow(probas[:, k].reshape((100, 100)),
extent=(3, 9, 1, 5), origin='lower')
plt.xticks(())
plt.yticks(())
idx = (y_pred == k)
if idx.any():
plt.scatter(X[idx, 0], X[idx, 1], marker='o', c='k')
ax = plt.axes([0.15, 0.04, 0.7, 0.05])
plt.title("Probability")
plt.colorbar(imshow_handle, cax=ax, orientation='horizontal')
plt.show()
classif_rate for L2 logistic (OvR) : 76.666667
classif_rate for L1 logistic : 79.333333
classif_rate for Linear SVC : 82.000000
classif_rate for L2 logistic (Multinomial) : 82.000000
Python source code: plot_classification_probability.py
http://scikit-learn.org/stable/_downloads/plot_classification_probability.py
print(__doc__)
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# License: BSD 3 clause
import matplotlib.pyplot as plt
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn import datasets
iris = datasets.load_iris()
X = iris.data[:, 0:2] # we only take the first two features for visualization
y = iris.target
n_features = X.shape[1]
C = 1.0
# Create different classifiers. The logistic regression cannot do
# multiclass out of the box.
classifiers = {'L1 logistic': LogisticRegression(C=C, penalty='l1'),
'L2 logistic (OvR)': LogisticRegression(C=C, penalty='l2'),
'Linear SVC': SVC(kernel='linear', C=C, probability=True,
random_state=0),
'L2 logistic (Multinomial)': LogisticRegression(
C=C, solver='lbfgs', multi_class='multinomial'
)}
n_classifiers = len(classifiers)
plt.figure(figsize=(3 * 2, n_classifiers * 2))
plt.subplots_adjust(bottom=.2, top=.95)
xx = np.linspace(3, 9, 100)
yy = np.linspace(1, 5, 100).T
xx, yy = np.meshgrid(xx, yy)
Xfull = np.c_[xx.ravel(), yy.ravel()]
for index, (name, classifier) in enumerate(classifiers.items()):
classifier.fit(X, y)
y_pred = classifier.predict(X)
classif_rate = np.mean(y_pred.ravel() == y.ravel()) * 100
print("classif_rate for %s : %f " % (name, classif_rate))
# View probabilities=
probas = classifier.predict_proba(Xfull)
n_classes = np.unique(y_pred).size
for k in range(n_classes):
plt.subplot(n_classifiers, n_classes, index * n_classes + k + 1)
plt.title("Class %d" % k)
if k == 0:
plt.ylabel(name)
imshow_handle = plt.imshow(probas[:, k].reshape((100, 100)),
extent=(3, 9, 1, 5), origin='lower')
plt.xticks(())
plt.yticks(())
idx = (y_pred == k)
if idx.any():
plt.scatter(X[idx, 0], X[idx, 1], marker='o', c='k')
ax = plt.axes([0.15, 0.04, 0.7, 0.05])
plt.title("Probability")
plt.colorbar(imshow_handle, cax=ax, orientation='horizontal')
plt.show()