Skip to content

Latest commit

 

History

History
89 lines (67 loc) · 2.11 KB

4_tensorflow.md

File metadata and controls

89 lines (67 loc) · 2.11 KB

安裝 TensorFlow

  1. 安裝依賴套件

    $ sudo apt-get install default-jdk libcupti-dev
    $ export JAVA_HOME='/usr/lib/jvm/java-8-openjdk-arm64/'
  2. 取得 TensorFlow 編譯腳本

    $ git clone git://github.com/jetsonhacks/installTensorFlowTX2
    $ cd installTensorFlowTX2
  3. 執行編譯腳本

    $ ./installPrerequisitesPy3.sh
    $ ./cloneTensorFlow.sh
    $ ./setTensorFlowEVPy3.sh
    $ ./buildTensorFlow.sh
    $ ./packageTensorFlow.sh
  4. 安裝 TensorFlow

    1. 建立虛擬開發環境

      $ virtualenv TensorFlow
    2. 進入虛擬開發環境

      $ cd TensorFlow
      $ source bin/active
    3. 安裝 TensorFlow 到虛擬環境

      pip3 install $HOME/<TensorFlow 的 .whl 安裝封包>
    4. 測試 TensorFlow

      1. Hello World

        import tensorflow as tf
        hello = tf.constant('Hello, TensorFlow on NVIDIA Jetson TX2!')
        sess = tf.Session()
        print(sess.run(hello))

        輸出

        Hello, TensorFlow on NVIDIA Jetson TX2!
        
      2. 運算單元

        import tensorflow as tf
        # Creates a graph.
        a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
        b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
        c = tf.matmul(a, b)
        # Creates a session with log_device_placement set to True.
        sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
        # Runs the op.
        print(sess.run(c))

        輸出

        name: NVIDIA Tegra X2
        major: 6 minor: 2 memoryClockRate (GHz) 1.3005
        MatMul: (MatMul): /job:localhost/replica:0/task:0/gpu:0
        b: (Const): /job:localhost/replica:0/task:0/gpu:0
        a: (Const): /job:localhost/replica:0/task:0/gpu:0
        [[ 22.  28.]
        [ 49.  64.]]