forked from dsindex/syntaxnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_sejong.sh
executable file
·272 lines (230 loc) · 7.72 KB
/
train_sejong.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
#!/bin/bash
set -o nounset
set -o errexit
# code from http://stackoverflow.com/a/1116890
function readlink()
{
TARGET_FILE=$2
cd `dirname $TARGET_FILE`
TARGET_FILE=`basename $TARGET_FILE`
# Iterate down a (possible) chain of symlinks
while [ -L "$TARGET_FILE" ]
do
TARGET_FILE=`readlink $TARGET_FILE`
cd `dirname $TARGET_FILE`
TARGET_FILE=`basename $TARGET_FILE`
done
# Compute the canonicalized name by finding the physical path
# for the directory we're in and appending the target file.
PHYS_DIR=`pwd -P`
RESULT=$PHYS_DIR/$TARGET_FILE
echo $RESULT
}
export -f readlink
VERBOSE_MODE=0
function error_handler()
{
local STATUS=${1:-1}
[ ${VERBOSE_MODE} == 0 ] && exit ${STATUS}
echo "Exits abnormally at line "`caller 0`
exit ${STATUS}
}
trap "error_handler" ERR
PROGNAME=`basename ${BASH_SOURCE}`
function print_usage_and_exit()
{
set +x
local STATUS=$1
echo "Usage: ${PROGNAME} [-v] [-v] [-h] [--help]"
echo ""
echo " Options -"
echo " -v enables verbose mode 1"
echo " -v -v enables verbose mode 2"
echo " -h, --help shows this help message"
exit ${STATUS:-0}
}
function debug()
{
if [ "$VERBOSE_MODE" != 0 ]; then
echo $@
fi
}
GETOPT=`getopt vh $*`
if [ $? != 0 ] ; then print_usage_and_exit 1; fi
eval set -- "${GETOPT}"
while true
do case "$1" in
-v) let VERBOSE_MODE+=1; shift;;
-h|--help) print_usage_and_exit 0;;
--) shift; break;;
*) echo "Internal error!"; exit 1;;
esac
done
if (( VERBOSE_MODE > 1 )); then
set -x
fi
# template area is ended.
# -----------------------------------------------------------------------------
if [ ${#} != 0 ]; then print_usage_and_exit 1; fi
# current dir of this script
CDIR=$(readlink -f $(dirname $(readlink -f ${BASH_SOURCE[0]})))
PDIR=$(readlink -f $(dirname $(readlink -f ${BASH_SOURCE[0]}))/..)
# -----------------------------------------------------------------------------
# functions
function make_calmness()
{
exec 3>&2 # save 2 to 3
exec 2> /dev/null
}
function revert_calmness()
{
exec 2>&3 # restore 2 from previous saved 3(originally 2)
}
function close_fd()
{
exec 3>&-
}
function jumpto
{
label=$1
cmd=$(sed -n "/$label:/{:a;n;p;ba};" $0 | grep -v ':$')
eval "$cmd"
exit
}
# end functions
# -----------------------------------------------------------------------------
# -----------------------------------------------------------------------------
# main
make_calmness
if (( VERBOSE_MODE > 1 )); then
revert_calmness
fi
cd ${PDIR}
python=/usr/bin/python
SYNTAXNET_HOME=${PDIR}
BINDIR=$SYNTAXNET_HOME/bazel-bin/syntaxnet
CONTEXT=${CDIR}/sejong/context.pbtxt_p
TMP_DIR=${CDIR}/sejong/tmp_p/syntaxnet-output
mkdir -p ${TMP_DIR}
cat ${CONTEXT} | sed "s=OUTPATH=${TMP_DIR}=" > ${TMP_DIR}/context
MODEL_DIR=${CDIR}/models_sejong
HIDDEN_LAYER_SIZES=512,512
HIDDEN_LAYER_PARAMS=512,512
BATCH_SIZE=256
BEAM_SIZE=16
LP_PARAMS=${HIDDEN_LAYER_PARAMS}-0.08-4400-0.85
function pretrain_parser {
${BINDIR}/parser_trainer \
--arg_prefix=brain_parser \
--batch_size=${BATCH_SIZE} \
--compute_lexicon \
--decay_steps=4400 \
--graph_builder=greedy \
--hidden_layer_sizes=${HIDDEN_LAYER_SIZES} \
--learning_rate=0.08 \
--momentum=0.85 \
--beam_size=1 \
--output_path=${TMP_DIR} \
--task_context=${TMP_DIR}/context \
--projectivize_training_set \
--training_corpus=tagged-training-corpus \
--tuning_corpus=tagged-tuning-corpus \
--params=${LP_PARAMS} \
--num_epochs=20 \
--report_every=100 \
--checkpoint_every=1000 \
--logtostderr
}
function evaluate_pretrained_parser {
for SET in training tuning test; do
${BINDIR}/parser_eval \
--task_context=${TMP_DIR}/brain_parser/greedy/${LP_PARAMS}/context \
--batch_size=${BATCH_SIZE} \
--hidden_layer_sizes=${HIDDEN_LAYER_SIZES} \
--beam_size=1 \
--input=tagged-${SET}-corpus \
--output=parsed-${SET}-corpus \
--arg_prefix=brain_parser \
--graph_builder=greedy \
--model_path=${TMP_DIR}/brain_parser/greedy/${LP_PARAMS}/model
done
}
function evaluate_pretrained_parser_by_eoj {
for SET in training tuning test; do
cut -f8 ${CDIR}/sejong/wdir/deptree.txt.v3.${SET} > ${CDIR}/sejong/wdir/deptree.txt.v3.${SET}.deprel
paste ${TMP_DIR}/brain_parser/greedy/${LP_PARAMS}/parsed-${SET}-corpus ${CDIR}/sejong/wdir/deptree.txt.v3.${SET}.deprel > ${TMP_DIR}/brain_parser/greedy/${LP_PARAMS}/parsed-${SET}-corpus-add
${python} ${CDIR}/sejong/align_r.py < ${TMP_DIR}/brain_parser/greedy/${LP_PARAMS}/parsed-${SET}-corpus-add > ${TMP_DIR}/brain_parser/greedy/${LP_PARAMS}/parsed-${SET}-corpus-eoj
${python} ${CDIR}/sejong/eval.py -a ${CDIR}/sejong/wdir/deptree.txt.v2.${SET} -b ${TMP_DIR}/brain_parser/greedy/${LP_PARAMS}/parsed-${SET}-corpus-eoj \
> ${TMP_DIR}/brain_parser/greedy/${LP_PARAMS}/parsed-${SET}-corpus-eoj-ret
done
}
GP_PARAMS=${HIDDEN_LAYER_PARAMS}-0.02-100-0.9
function train_parser {
${BINDIR}/parser_trainer \
--arg_prefix=brain_parser \
--batch_size=${BATCH_SIZE} \
--compute_lexicon \
--decay_steps=100 \
--graph_builder=structured \
--hidden_layer_sizes=${HIDDEN_LAYER_SIZES} \
--learning_rate=0.02 \
--momentum=0.9 \
--beam_size=${BEAM_SIZE} \
--output_path=${TMP_DIR} \
--task_context=${TMP_DIR}/brain_parser/greedy/${LP_PARAMS}/context \
--training_corpus=projectivized-training-corpus \
--tuning_corpus=tagged-tuning-corpus \
--params=${GP_PARAMS} \
--pretrained_params=${TMP_DIR}/brain_parser/greedy/${LP_PARAMS}/model \
--pretrained_params_names=embedding_matrix_0,embedding_matrix_1,embedding_matrix_2,bias_0,weights_0,bias_1,weights_1 \
--num_epochs=10 \
--report_every=25 \
--checkpoint_every=200 \
--logtostderr
}
function evaluate_parser {
for SET in training tuning test; do
${BINDIR}/parser_eval \
--task_context=${TMP_DIR}/brain_parser/structured/${GP_PARAMS}/context \
--batch_size=${BATCH_SIZE} \
--hidden_layer_sizes=${HIDDEN_LAYER_SIZES} \
--beam_size=${BEAM_SIZE} \
--input=tagged-${SET}-corpus \
--output=beam-parsed-${SET}-corpus \
--arg_prefix=brain_parser \
--graph_builder=structured \
--model_path=${TMP_DIR}/brain_parser/structured/${GP_PARAMS}/model
done
}
function evaluate_parser_by_eoj {
for SET in training tuning test; do
cut -f8 ${CDIR}/sejong/wdir/deptree.txt.v3.${SET} > ${CDIR}/sejong/wdir/deptree.txt.v3.${SET}.deprel
paste ${TMP_DIR}/brain_parser/structured/${GP_PARAMS}/beam-parsed-${SET}-corpus ${CDIR}/sejong/wdir/deptree.txt.v3.${SET}.deprel > ${TMP_DIR}/brain_parser/structured/${GP_PARAMS}/beam-parsed-${SET}-corpus-add
${python} ${CDIR}/sejong/align_r.py < ${TMP_DIR}/brain_parser/structured/${GP_PARAMS}/beam-parsed-${SET}-corpus-add > ${TMP_DIR}/brain_parser/structured/${GP_PARAMS}/beam-parsed-${SET}-corpus-eoj
${python} ${CDIR}/sejong/eval.py -a ${CDIR}/sejong/wdir/deptree.txt.v2.${SET} -b ${TMP_DIR}/brain_parser/structured/${GP_PARAMS}/beam-parsed-${SET}-corpus-eoj \
> ${TMP_DIR}/brain_parser/structured/${GP_PARAMS}/beam-parsed-${SET}-corpus-eoj-ret
done
}
function xcopy_model {
cp -rf ${TMP_DIR}/brain_parser/structured/${GP_PARAMS}/model ${MODEL_DIR}/parser-params
cp -rf ${TMP_DIR}/*-map ${MODEL_DIR}/
cp -rf ${TMP_DIR}/*-table ${MODEL_DIR}/
cp -rf ${TMP_DIR}/tag-to-category ${MODEL_DIR}/
}
function copy_model {
mkdir -p ${MODEL_DIR}/parser-params
cp -rf ${TMP_DIR}/brain_parser/structured/${GP_PARAMS}/model.* ${MODEL_DIR}/parser-params
cp -rf ${TMP_DIR}/*-map ${MODEL_DIR}/
cp -rf ${TMP_DIR}/*-table ${MODEL_DIR}/
cp -rf ${TMP_DIR}/tag-to-category ${MODEL_DIR}/
}
pretrain_parser
evaluate_pretrained_parser
evaluate_pretrained_parser_by_eoj
train_parser
evaluate_parser
evaluate_parser_by_eoj
copy_model
close_fd
# end main
# -----------------------------------------------------------------------------