-
Notifications
You must be signed in to change notification settings - Fork 39
/
train_imagenet.py
306 lines (201 loc) · 8.92 KB
/
train_imagenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
#Copyright (C) 2020. Huawei Technologies Co., Ltd. All rights reserved.
#This program is free software; you can redistribute it and/or modify it under the terms of the BSD 3-Clause License.
#This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the BSD 3-Clause License for more details.
import argparse
import os
import shutil
import time
import math
import warnings
import models
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from disout import Disout,LinearScheduler
from models.resnet_imagenet import resnet50_disout
parser = argparse.ArgumentParser(description='PyTorch Resnet')
parser.add_argument('--data', metavar='DIR',default='/cache/tyh/imagenet/',help='path to dataset')
parser.add_argument('-j', '--workers', default=16, type=int, metavar='N',help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=540, type=int, metavar='N',help='number of total epochs to run')
parser.add_argument('--batch-size', default=1024, type=int,metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--lr', '--learning-rate', default=0.4, type=float,metavar='LR', help='initial learning rate (default: 0.1)')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',help='momentum (default: 0.9)')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float, metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--print-freq', '-p', default=1000, type=int,metavar='N', help='print frequency (default: 10)')
parser.add_argument('--manual-seed', default=0, type=int, metavar='N',help='manual seed (default: 0)')
parser.add_argument('--dist_prob', default=0.07, type=float)
parser.add_argument('--block_size', default=7, type=int)
parser.add_argument('--alpha', default=1, type=float)
args,unparsed = parser.parse_known_args()
warnings.filterwarnings("ignore")
torch.manual_seed(args.manual_seed)
torch.cuda.manual_seed_all(args.manual_seed)
best_prec1 = 0
def main():
global args, best_prec1
traindir = os.path.join(args.data, 'train')
valdir = os.path.join(args.data, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])
train_set = datasets.ImageFolder(traindir, transforms.Compose([
transforms.RandomSizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
val_set = datasets.ImageFolder(valdir, transforms.Compose([
transforms.Scale(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]))
train_loader = torch.utils.data.DataLoader(
train_set,
batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True)
val_loader = torch.utils.data.DataLoader(
val_set,
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
model=resnet50_disout(dist_prob=args.dist_prob,block_size=args.block_size,alpha=args.alpha,nr_steps=len(train_loader)*args.epochs)
model = torch.nn.DataParallel(model).cuda()
criterion = nn.CrossEntropyLoss().cuda()
optimizer = torch.optim.SGD(model.parameters(), args.lr,momentum=args.momentum,weight_decay=args.weight_decay,nesterov=True)
cudnn.benchmark = True
namlist=[]
modulelist=[]
for nam,module in model.named_modules():
namlist.append(nam)
modulelist.append(module)
num_module=len(modulelist)
dploc=[]
convloc=[]
for idb in range(num_module):
if isinstance(modulelist[idb],Disout):
dploc.append(idb-1)
for iconv in range(idb,num_module):
if isinstance (modulelist[iconv],nn.Conv2d) and not('downsample' in namlist[iconv]):
convloc.append(iconv-1)
break
print(len(dploc),len(convloc))
print('dploc:',dploc)
print('convloc:',convloc)
for epoch in range(0, args.epochs):
tr_prec1, tr_prec5, loss, lr = train(train_loader, model, criterion, optimizer, epoch)
val_prec1, val_prec5 = validate(val_loader, model, criterion,epoch)
is_best = val_prec1 > best_prec1
best_prec1 = max(val_prec1, best_prec1)
print("best_prec1:",best_prec1)
return
def train(train_loader, model, criterion, optimizer, epoch):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
learned_module_list = []
model.train()
running_lr = None
end = time.time()
for i, (input, target) in enumerate(train_loader):
for module in model.modules():
if isinstance(module,Disout):
module.weight_behind={}
for module in model.modules():
if isinstance(module,LinearScheduler):
module.step()
progress = float(epoch * len(train_loader) + i) / (args.epochs * len(train_loader))
args.progress = progress
lr = adjust_learning_rate(optimizer, epoch, args, batch=i,nBatch=len(train_loader))
if running_lr is None:
running_lr = lr
data_time.update(time.time() - end)
target = target.cuda()
input_var = torch.autograd.Variable(input)
target_var = torch.autograd.Variable(target)
output = model(input_var)
loss = criterion(output, target_var)
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.data.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
top5.update(prec5.item(), input.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
batch_time.update(time.time() - end)
end = time.time()
print('Epoch: [{epoch}] lr: {lr: .6f} * Prec@1_train {top1.avg:.3f} Prec@5_train {top5.avg:.3f} Loss_train {losses.avg:.4f}'.format(epoch=epoch,lr=lr,top1=top1, top5=top5,losses=losses))
return 100. - top1.avg, 100. - top5.avg, losses.avg, running_lr
def validate(val_loader, model, criterion,epoch):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
model.eval()
end = time.time()
for i, (input, target) in enumerate(val_loader):
target = target.cuda(async=True)
with torch.no_grad():
input_var = torch.autograd.Variable(input)
target_var = torch.autograd.Variable(target)
output = model(input_var)
loss = criterion(output, target_var)
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.data.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
top5.update(prec5.item(), input.size(0))
batch_time.update(time.time() - end)
end = time.time()
# if i % args.print_freq == 0:
# print('Test: [{0}/{1}]\t'
# 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
# 'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
# 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
# 'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
# i, len(val_loader), batch_time=batch_time, loss=losses,
# top1=top1, top5=top5))
print('Test Epoch: [{epoch}] * Prec@1_test {top1.avg:.3f} Prec@5_test {top5.avg:.3f} Loss_test {losses.avg:.4f}'.format(epoch=epoch,top1=top1, top5=top5,losses=losses))
return top1.avg, top5.avg
class AverageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def adjust_learning_rate(optimizer, epoch, args, batch=None,nBatch=None):
lr, decay_rate = args.lr, 0.1
if epoch >= args.epochs * 0.93:
lr *= decay_rate**3
elif epoch >= args.epochs * 0.74:
lr *= decay_rate**2
elif epoch >= args.epochs * 0.45:
lr *= decay_rate
else:
lr=lr
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
def accuracy(output, target, topk=(1,)):
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()