diff --git a/src/transformers/models/siglip/tokenization_siglip.py b/src/transformers/models/siglip/tokenization_siglip.py index 56d0b0ac70a9a5..83b9b6137c09f2 100644 --- a/src/transformers/models/siglip/tokenization_siglip.py +++ b/src/transformers/models/siglip/tokenization_siglip.py @@ -121,6 +121,7 @@ def __init__( split_special_tokens=True, **kwargs, ) -> None: + print("Pad token:", pad_token) pad_token = AddedToken(pad_token, rstrip=True, lstrip=True) unk_token = AddedToken(unk_token, rstrip=True, lstrip=True) eos_token = AddedToken(eos_token, rstrip=True, lstrip=True) diff --git a/tests/models/siglip/test_tokenization_siglip.py b/tests/models/siglip/test_tokenization_siglip.py new file mode 100644 index 00000000000000..265906818bf479 --- /dev/null +++ b/tests/models/siglip/test_tokenization_siglip.py @@ -0,0 +1,563 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import json +import os +import tempfile +import unittest + +from transformers import SPIECE_UNDERLINE, AddedToken, BatchEncoding, SiglipTokenizer, SiglipTokenizerFast +from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_seqio, require_tokenizers, slow +from transformers.utils import cached_property, is_tf_available, is_torch_available + +from ...test_tokenization_common import TokenizerTesterMixin + + +SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model") + +if is_torch_available(): + FRAMEWORK = "pt" +elif is_tf_available(): + FRAMEWORK = "tf" +else: + FRAMEWORK = "jax" + + +@require_sentencepiece +@require_tokenizers +class SiglipTokenizationTest(TokenizerTesterMixin, unittest.TestCase): + tokenizer_class = SiglipTokenizer + rust_tokenizer_class = SiglipTokenizerFast + test_rust_tokenizer = False + test_sentencepiece = True + + def setUp(self): + super().setUp() + + # We have a SentencePiece fixture for testing + tokenizer = SiglipTokenizer(SAMPLE_VOCAB) + tokenizer.save_pretrained(self.tmpdirname) + + def test_convert_token_and_id(self): + """Test ``_convert_token_to_id`` and ``_convert_id_to_token``.""" + token = "" + token_id = 1 + + self.assertEqual(self.get_tokenizer()._convert_token_to_id(token), token_id) + self.assertEqual(self.get_tokenizer()._convert_id_to_token(token_id), token) + + def test_get_vocab(self): + vocab_keys = list(self.get_tokenizer().get_vocab().keys()) + + self.assertEqual(vocab_keys[0], "") + self.assertEqual(vocab_keys[1], "") + self.assertEqual(vocab_keys[1100], "") + self.assertEqual(len(vocab_keys), 1_101) + + def test_vocab_size(self): + self.assertEqual(self.get_tokenizer().vocab_size, 1000) + self.assertEqual(len(self.get_tokenizer()), 1101) + + def test_full_tokenizer(self): + tokenizer = SiglipTokenizer(SAMPLE_VOCAB) + + tokens = tokenizer.tokenize("This is a test") + self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"]) + + self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [285, 46, 10, 170, 382]) + + tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.") + self.assertListEqual( + tokens, + [ + SPIECE_UNDERLINE + "I", + SPIECE_UNDERLINE + "was", + SPIECE_UNDERLINE + "b", + "or", + "n", + SPIECE_UNDERLINE + "in", + SPIECE_UNDERLINE + "", + "9", + "2", + "0", + "0", + "0", + ",", + SPIECE_UNDERLINE + "and", + SPIECE_UNDERLINE + "this", + SPIECE_UNDERLINE + "is", + SPIECE_UNDERLINE + "f", + "al", + "s", + "é", + ".", + ], + ) + ids = tokenizer.convert_tokens_to_ids(tokens) + self.assertListEqual(ids, [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4]) + + back_tokens = tokenizer.convert_ids_to_tokens(ids) + self.assertListEqual( + back_tokens, + [ + SPIECE_UNDERLINE + "I", + SPIECE_UNDERLINE + "was", + SPIECE_UNDERLINE + "b", + "or", + "n", + SPIECE_UNDERLINE + "in", + SPIECE_UNDERLINE + "", + "", + "2", + "0", + "0", + "0", + ",", + SPIECE_UNDERLINE + "and", + SPIECE_UNDERLINE + "this", + SPIECE_UNDERLINE + "is", + SPIECE_UNDERLINE + "f", + "al", + "s", + "", + ".", + ], + ) + + @cached_property + def siglip_tokenizer(self): + return SiglipTokenizer.from_pretrained("t5-base") + + @cached_property + def siglip_tokenizer_fast(self): + return SiglipTokenizerFast.from_pretrained("t5-base") + + def get_tokenizer(self, **kwargs) -> SiglipTokenizer: + return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) + + def get_rust_tokenizer(self, **kwargs) -> SiglipTokenizerFast: + return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) + + def test_rust_and_python_full_tokenizers(self): + if not self.test_rust_tokenizer: + return + + tokenizer = self.get_tokenizer() + rust_tokenizer = self.get_rust_tokenizer() + + sequence = "I was born in 92000, and this is falsé." + + tokens = tokenizer.tokenize(sequence) + rust_tokens = rust_tokenizer.tokenize(sequence) + self.assertListEqual(tokens, rust_tokens) + + ids = tokenizer.encode(sequence, add_special_tokens=False) + rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False) + self.assertListEqual(ids, rust_ids) + + rust_tokenizer = self.get_rust_tokenizer() + ids = tokenizer.encode(sequence) + rust_ids = rust_tokenizer.encode(sequence) + self.assertListEqual(ids, rust_ids) + + def test_eos_treatment(self): + tokenizer = self.siglip_tokenizer + batch_with_eos_added = tokenizer(["hi", "I went to the gym", ""]) + batch_without_eos_added = tokenizer(["hi", "I went to the gym", ""]) + self.assertListEqual(batch_with_eos_added["input_ids"], batch_without_eos_added["input_ids"]) + + def test_prepare_batch(self): + tokenizer = self.siglip_tokenizer + src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."] + expected_src_tokens = [71, 307, 8986, 21, 4505, 1635, 1707, 5, tokenizer.eos_token_id] + batch = tokenizer(src_text, padding=True, return_tensors=FRAMEWORK) + self.assertIsInstance(batch, BatchEncoding) + + if FRAMEWORK != "jax": + result = list(batch.input_ids.numpy()[0]) + else: + result = list(batch.input_ids.tolist()[0]) + + self.assertListEqual(expected_src_tokens, result) + + self.assertEqual((2, 9), batch.input_ids.shape) + self.assertEqual((2, 9), batch.attention_mask.shape) + + def test_empty_target_text(self): + tokenizer = self.siglip_tokenizer + src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."] + batch = tokenizer(src_text, padding=True, return_tensors=FRAMEWORK) + # check if input_ids are returned and no decoder_input_ids + self.assertIn("input_ids", batch) + self.assertIn("attention_mask", batch) + self.assertNotIn("decoder_input_ids", batch) + self.assertNotIn("decoder_attention_mask", batch) + + def test_max_length(self): + tokenizer = self.siglip_tokenizer + tgt_text = [ + "Summary of the text.", + "Another summary.", + ] + targets = tokenizer( + text_target=tgt_text, max_length=32, padding="max_length", truncation=True, return_tensors=FRAMEWORK + ) + self.assertEqual(32, targets["input_ids"].shape[1]) + + def test_outputs_not_longer_than_maxlen(self): + tokenizer = self.siglip_tokenizer + + batch = tokenizer( + ["I am a small frog" * 1000, "I am a small frog"], padding=True, truncation=True, return_tensors=FRAMEWORK + ) + self.assertIsInstance(batch, BatchEncoding) + # Since Siglip does NOT have a max input length, + # this test should be changed to the following in Transformers v5: + # self.assertEqual(batch.input_ids.shape, (2, 8001)) + self.assertEqual(batch.input_ids.shape, (2, 512)) + + def test_eos_in_input(self): + tokenizer = self.siglip_tokenizer + src_text = ["A long paragraph for summarization. "] + tgt_text = ["Summary of the text. "] + expected_src_tokens = [71, 307, 8986, 21, 4505, 1635, 1707, 5, 1] + expected_tgt_tokens = [20698, 13, 8, 1499, 5, 1] + + batch = tokenizer(src_text, text_target=tgt_text) + + self.assertEqual(expected_src_tokens, batch["input_ids"][0]) + self.assertEqual(expected_tgt_tokens, batch["labels"][0]) + + def test_token_type_ids(self): + src_text_1 = ["A first paragraph for summarization."] + src_text_2 = ["A second paragraph for summarization."] + + fast_token_type_ids = self.siglip_tokenizer_fast( + src_text_1, src_text_2, add_special_tokens=True, return_token_type_ids=True + ).token_type_ids + slow_token_type_ids = self.siglip_tokenizer( + src_text_1, src_text_2, add_special_tokens=True, return_token_type_ids=True + ).token_type_ids + + self.assertEqual(slow_token_type_ids, fast_token_type_ids) + self.assertEqual(len(slow_token_type_ids[0]), 18) + + def test_fast_and_slow_same_result(self): + src_text = " Today is nice day " + tgt_ids = [0, 1960, 19, 2, 1245, 239, 1] + tgt_text = " Today is nice day" + + fast_ids = self.siglip_tokenizer_fast(src_text, add_special_tokens=False).input_ids + slow_ids = self.siglip_tokenizer(src_text, add_special_tokens=False).input_ids + self.assertEqual(tgt_ids, fast_ids) + self.assertEqual(tgt_ids, slow_ids) + + fast_text = self.siglip_tokenizer_fast.decode(fast_ids) + slow_text = self.siglip_tokenizer.decode(fast_ids) + self.assertEqual(tgt_text, fast_text) + self.assertEqual(tgt_text, slow_text) + + def test_special_tokens_initialization(self): + for tokenizer, pretrained_name, kwargs in self.tokenizers_list: + with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): + added_tokens = [f"" for i in range(100)] + [AddedToken("", lstrip=True)] + + tokenizer_r = self.rust_tokenizer_class.from_pretrained( + pretrained_name, additional_special_tokens=added_tokens, **kwargs + ) + tokenizer_cr = self.rust_tokenizer_class.from_pretrained( + pretrained_name, additional_special_tokens=added_tokens, **kwargs, from_slow=True + ) + tokenizer_p = self.tokenizer_class.from_pretrained( + pretrained_name, additional_special_tokens=added_tokens, **kwargs + ) + + p_output = tokenizer_p.encode("Hey this is a token") + r_output = tokenizer_r.encode("Hey this is a token") + cr_output = tokenizer_cr.encode("Hey this is a token") + + special_token_id = tokenizer_r.encode("", add_special_tokens=False)[0] + + self.assertEqual(p_output, r_output) + self.assertEqual(cr_output, r_output) + self.assertTrue(special_token_id in p_output) + self.assertTrue(special_token_id in r_output) + self.assertTrue(special_token_id in cr_output) + + def test_special_tokens_initialization_with_non_empty_additional_special_tokens(self): + tokenizer_list = [] + if self.test_slow_tokenizer: + tokenizer_list.append((self.tokenizer_class, self.get_tokenizer())) + + if self.test_rust_tokenizer: + tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer())) + + for tokenizer_class, tokenizer_utils in tokenizer_list: + with tempfile.TemporaryDirectory() as tmp_dir: + tokenizer_utils.save_pretrained(tmp_dir) + + with open(os.path.join(tmp_dir, "special_tokens_map.json"), encoding="utf-8") as json_file: + special_tokens_map = json.load(json_file) + + with open(os.path.join(tmp_dir, "tokenizer_config.json"), encoding="utf-8") as json_file: + tokenizer_config = json.load(json_file) + + added_tokens_extra_ids = [f"" for i in range(100)] + + special_tokens_map["additional_special_tokens"] = added_tokens_extra_ids + [ + "an_additional_special_token" + ] + tokenizer_config["additional_special_tokens"] = added_tokens_extra_ids + [ + "an_additional_special_token" + ] + + with open(os.path.join(tmp_dir, "special_tokens_map.json"), "w", encoding="utf-8") as outfile: + json.dump(special_tokens_map, outfile) + with open(os.path.join(tmp_dir, "tokenizer_config.json"), "w", encoding="utf-8") as outfile: + json.dump(tokenizer_config, outfile) + + # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes + # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and + # "special_tokens_map.json" files + tokenizer_without_change_in_init = tokenizer_class.from_pretrained( + tmp_dir, + ) + self.assertIn( + "an_additional_special_token", tokenizer_without_change_in_init.additional_special_tokens + ) + # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # BySiglipTokenization no vocab + self.assertEqual( + ["an_additional_special_token"], + tokenizer_without_change_in_init.convert_ids_to_tokens( + tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"]) + ), + ) + + # Now we test that we can change the value of additional_special_tokens in the from_pretrained + new_added_tokens = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token", lstrip=True)] + tokenizer = tokenizer_class.from_pretrained( + tmp_dir, + additional_special_tokens=new_added_tokens, + ) + + self.assertIn("a_new_additional_special_token", tokenizer.additional_special_tokens) + self.assertEqual( + ["a_new_additional_special_token"], + tokenizer.convert_ids_to_tokens( + tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"]) + ), + ) + + # overwritten from `test_tokenization_common` since Siglip has no max length + def test_pretrained_model_lists(self): + # We should have at least one default checkpoint for each tokenizer + # We should specify the max input length as well (used in some part to list the pretrained checkpoints) + self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map), 1) + self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values())[0]), 1) + + @slow + def test_tokenizer_integration(self): + expected_encoding = {'input_ids': [[31220, 7, 41, 14034, 801, 38, 3, 102, 63, 17, 127, 524, 18, 7031, 2032, 277, 11, 3, 102, 63, 17, 127, 524, 18, 2026, 17, 10761, 18, 7041, 61, 795, 879, 18, 19681, 4648, 7, 41, 12920, 382, 6, 350, 6383, 4949, 6, 2158, 12920, 382, 9, 6, 3, 4, 11160, 6, 2043, 17153, 279, 49, 17, 6, 3, 4, 434, 9688, 11439, 21, 6869, 10509, 17725, 41, 567, 9138, 61, 11, 6869, 10509, 11946, 41, 18207, 517, 61, 28, 147, 3538, 1220, 7140, 10761, 2250, 16, 910, 1220, 8024, 11, 1659, 1413, 32, 883, 2020, 344, 2215, 226, 6, 12901, 382, 127, 524, 11, 4738, 7, 127, 15390, 5, 1], [272, 24203, 19, 876, 12, 554, 18, 9719, 1659, 2647, 26352, 6497, 7, 45, 73, 9339, 400, 26, 1499, 57, 22801, 10760, 30, 321, 646, 11, 269, 2625, 16, 66, 7500, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [37, 1704, 4216, 3, 20400, 4418, 7, 147, 8, 19743, 1782, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: skip + + self.tokenizer_integration_test_util( + expected_encoding=expected_encoding, + model_name="t5-base", + revision="5a7ff2d8f5117c194c7e32ec1ccbf04642cca99b", + ) + + def test_some_edge_cases(self): + tokenizer = SiglipTokenizer.from_pretrained("t5-base", legacy=False) + + sp_tokens = tokenizer.sp_model.encode(">", out_type=str) + self.assertEqual(sp_tokens, ["<", "/", "s", ">", ">"]) + tokens = tokenizer.tokenize(">") + self.assertNotEqual(sp_tokens, tokens) + self.assertEqual(tokens, ["", ">"]) + + tokens = tokenizer.tokenize("") + self.assertEqual(tokens, []) + self.assertEqual(tokens, tokenizer.sp_model.encode("", out_type=str)) + + tokens = tokenizer.tokenize(" ") + self.assertEqual(tokens, []) + self.assertEqual(tokens, tokenizer.sp_model.encode(" ", out_type=str)) + + tokens = tokenizer.tokenize("▁") + self.assertEqual(tokens, []) + self.assertEqual(tokens, tokenizer.sp_model.encode("▁", out_type=str)) + + tokens = tokenizer.tokenize(" ▁") + self.assertEqual(tokens, []) + self.assertEqual(tokens, tokenizer.sp_model.encode("▁", out_type=str)) + + +@require_sentencepiece +@require_tokenizers +class CommonSpmIntegrationTests(unittest.TestCase): + """ + A class that regroups important test to make sure that we properly handle the special tokens. + """ + + @classmethod + def setUpClass(cls): + tokenizer = SiglipTokenizer(SAMPLE_VOCAB, extra_ids=0, legacy=False) + tokenizer.add_special_tokens( + {"additional_special_tokens": [AddedToken("", rstrip=False, lstrip=False)]} + ) + # TODO ArthurZ the above is necessary as addedTokens / intialization sucks. Trie is not correctly created + # So the extra ids are split.... + cls.tokenizer = tokenizer + + def test_add_dummy_prefix(self): + # make sure `'▁'` is prepended, and outputs match sp_model's + # `sentencepiece.NormalizerSpec.add_dummy_prefix` attribute + input_ids = self.tokenizer.encode(". Hello", add_special_tokens=False) + self.assertEqual(input_ids, [7, 4, 156, 86, 20]) + sp_encode = self.tokenizer.sp_model.encode(". Hello") + self.assertEqual(input_ids, [7] + sp_encode) + tokens = self.tokenizer.tokenize(". Hello") + self.assertEqual(tokens, ["▁", ".", "▁He", "ll", "o"]) + + tokens = self.tokenizer.tokenize("") + self.assertEqual(tokens, []) + self.assertEqual(tokens, self.tokenizer.sp_model.encode("", out_type=str)) + + tokens = self.tokenizer.tokenize(" ") + self.assertEqual(tokens, []) + self.assertEqual(tokens, self.tokenizer.sp_model.encode(" ", out_type=str)) + + tokens = self.tokenizer.tokenize("▁") + self.assertEqual(tokens, []) + self.assertEqual(tokens, self.tokenizer.sp_model.encode("▁", out_type=str)) + + def test_remove_extra_whitespaces(self): + # make sure the extra spaces are eaten + # sentencepiece.NormalizerSpec.remove_extra_whitespaces attribute + input_ids = self.tokenizer.encode(" . Hello", add_special_tokens=False) + self.assertEqual(input_ids, [7, 4, 156, 86, 20]) + sp_encode = self.tokenizer.sp_model.encode(" . Hello") + self.assertEqual(input_ids, [7] + sp_encode) + tokens = self.tokenizer.tokenize(" . Hello") + self.assertEqual(tokens, ["▁", ".", "▁He", "ll", "o"]) + + # `'▁'` is also a whitespace + input_ids = self.tokenizer.encode("▁He is not") + self.assertEqual(input_ids, [156, 46, 44, 2]) + tokens = self.tokenizer.tokenize("▁He is not") + self.assertEqual(tokens, ["▁He", "▁is", "▁not"]) # no extra space added + + input_ids = self.tokenizer.encode("▁He is not ▁He") + # here t5x does not eat with lstrip, so there is and extra ▁He in the original one + self.assertEqual(input_ids, [156, 46, 44, 1001, 156, 2]) + tokens = self.tokenizer.tokenize("▁He is not ▁He") + self.assertEqual(tokens, ["▁He", "▁is", "▁not", "", "▁He"]) # spaces are eaten by spm + # make sure that the output after the extra id is the same as if + # extra_id was not there + input_ids = self.tokenizer.encode("▁He is not ▁He") + self.assertEqual(input_ids, [156, 46, 44, 156, 2]) + tokens = self.tokenizer.tokenize("▁He is not ▁He") + self.assertEqual(tokens, ["▁He", "▁is", "▁not", "▁He"]) # spaces are eaten by spm even if not start + + def test_character_after_special_token(self): + # Make sure that `tokenizer.tokenize` is similar to + # adding the equivalent special token to the vocab + input_ids = self.tokenizer.encode("Hey I") + self.assertEqual(input_ids, [156, 30, 1001, 100, 2]) + tokens = self.tokenizer.tokenize("Hey I") + self.assertEqual(tokens, ["▁He", "y", "", "I"]) + + input_ids = self.tokenizer.encode("Hello, ,") + self.assertEqual(input_ids, [156, 86, 20, 3, 1001, 3, 2]) + tokens = self.tokenizer.tokenize("Hello, ,") + self.assertEqual(tokens, ["▁He", "ll", "o", ",", "", ","]) + + def test_special_tokens_strip(self): + input_ids = self.tokenizer.encode(" ,") + self.assertEqual(input_ids, [1001, 7, 3, 2]) + tokens = self.tokenizer.tokenize(" ,") + # spaces are not longer eaten by rstrip and lstrip + self.assertEqual(tokens, ["", "▁", ","]) + + # test with a begin of word like `▁He` + input_ids = self.tokenizer.encode("No He") + self.assertEqual(input_ids, [284, 1001, 156, 2]) + # spaces are eaten by rstrip / lstrip, so this is expected. Don't strip otherwise you break + tokens = self.tokenizer.tokenize("No He") + self.assertEqual(tokens, ["▁No", "", "▁He"]) + + # Make sure this does not happen if we don't strip + tokenizer = SiglipTokenizer(SAMPLE_VOCAB, extra_ids=0) + tokenizer.add_special_tokens({"bos_token": AddedToken("")}) + input_ids = tokenizer.encode("No He") + self.assertEqual(input_ids, [284, 1001, 156, 2]) + tokens = tokenizer.tokenize("No He") + # the first `' '` after `'No'` is eaten by spm: + self.assertEqual(tokenizer.sp_model.encode("No ", out_type=str), ["▁No"]) + self.assertEqual(tokens, ["▁No", "", "▁He"]) + + @require_seqio + @unittest.skipIf( + os.getenv("RUN_TOKENIZER_INTEGRATION", "0") == "0", + "RUN_TOKENIZER_INTEGRATION=1 to run tokenizer integration tests", + ) + def test_integration_seqio(self): + from datasets import load_dataset + from seqio import SentencePieceVocabulary + + ds = load_dataset("xnli", "all_languages", split="train+test+validation") + + # TODO @ArthurZucker fix the 3 commented tests with #23909 + input_texts = [ + "Bonjour .", + # "Bonjour.", # this will fail. In Siglip the special token has to be at the end. + # because in Siglip they add `_` to the vocab, not ``. + " Hey I love you", + # "Hey I love you", # this will fail, we strip left, to _I vs I + # "Hey ▁He", # this will fail for the same reason, we replace `_` then strip + ] + + import tqdm + + # Test with umt5 + vocab_path = "gs://t5-data/vocabs/umt5.256000/sentencepiece.model" + t5x_tokenizer = SentencePieceVocabulary(vocab_path, extra_ids=300) + hf_tokenizer = SiglipTokenizer.from_pretrained("google/umt5-small", legacy=False) + for text in input_texts: + self.assertEqual( + hf_tokenizer.encode(text, add_special_tokens=False), t5x_tokenizer.tokenizer.tokenize(text), f"{text}" + ) + for texts in tqdm.tqdm(ds["premise"]): + for text in texts: + self.assertEqual( + hf_tokenizer.encode(text, add_special_tokens=False), + t5x_tokenizer.tokenizer.tokenize(text), + f"{text}", + ) + + # Test with Siglip + hf_tokenizer = SiglipTokenizer.from_pretrained("t5-small") + vocab_path = "gs://t5-data/vocabs/cc_all.32000/sentencepiece.model" + t5x_tokenizer = SentencePieceVocabulary(vocab_path, extra_ids=300) + for text in input_texts: + self.assertEqual( + hf_tokenizer.encode(text, add_special_tokens=False), t5x_tokenizer.tokenizer.tokenize(text), f"{text}" + ) + for texts in tqdm.tqdm(ds["premise"]): + for text in texts: + self.assertEqual( + hf_tokenizer.encode(text, add_special_tokens=False), + t5x_tokenizer.tokenizer.tokenize(text), + f"{text}", + ) \ No newline at end of file