-
Notifications
You must be signed in to change notification settings - Fork 25
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
549ad53
commit 5ec1c90
Showing
3 changed files
with
326 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,323 @@ | ||
# | ||
# MIT License | ||
# | ||
# Copyright (c) 2023 Mike Heddes, Igor Nunes, Pere Vergés, Denis Kleyko, and Danny Abraham | ||
# | ||
# Permission is hereby granted, free of charge, to any person obtaining a copy | ||
# of this software and associated documentation files (the "Software"), to deal | ||
# in the Software without restriction, including without limitation the rights | ||
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
# copies of the Software, and to permit persons to whom the Software is | ||
# furnished to do so, subject to the following conditions: | ||
# | ||
# The above copyright notice and this permission notice shall be included in all | ||
# copies or substantial portions of the Software. | ||
# | ||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
# SOFTWARE. | ||
# | ||
import math | ||
from typing import Type, Self, Union, Optional, Literal, Callable, Iterable, Tuple | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
from torch.utils.data import TensorDataset, DataLoader | ||
from torch import Tensor, LongTensor | ||
from torch.nn.parameter import Parameter | ||
|
||
import torchhd.functional as functional | ||
from torchhd.embeddings import Random, Level, Projection, Sinusoid | ||
from torchhd.models import Centroid | ||
|
||
|
||
__all__ = [ | ||
"Classifier", | ||
"Vanilla", | ||
"AdaptHD", | ||
"OnlineHD", | ||
"DistHD", | ||
] | ||
|
||
|
||
class Classifier(nn.Module): | ||
|
||
encoder: Callable[[Tensor], Tensor] | ||
model: Callable[[Tensor], Tensor] | ||
|
||
def __init__( | ||
self, | ||
n_features: int, | ||
n_dimensions: int, | ||
n_classes: int, | ||
*, | ||
device: torch.device = None, | ||
dtype: torch.dtype = None | ||
) -> None: | ||
super().__init__() | ||
|
||
self.n_features = n_features | ||
self.n_dimensions = n_dimensions | ||
self.n_classes = n_classes | ||
|
||
def forward(self, samples: Tensor) -> Tensor: | ||
return self.model(self.encoder(samples)) | ||
|
||
def fit(self, samples: Tensor, labels: LongTensor) -> Self: | ||
raise NotImplementedError() | ||
|
||
def predict(self, samples: Tensor) -> LongTensor: | ||
return torch.argmax(self(samples), dim=-1) | ||
|
||
def score(self, samples: Tensor, labels: LongTensor) -> float: | ||
predictions = self.predict(samples) | ||
return torch.mean(predictions == labels, dtype=torch.float).item() | ||
|
||
|
||
class Vanilla(Classifier): | ||
|
||
model: Centroid | ||
|
||
def __init__( | ||
self, | ||
n_features: int, | ||
n_dimensions: int, | ||
n_classes: int, | ||
*, | ||
n_levels: int = 100, | ||
min_level: int = -1, | ||
max_level: int = 1, | ||
batch_size: Union[int, None] = 1024, | ||
device: torch.device = None, | ||
dtype: torch.dtype = None | ||
) -> None: | ||
super().__init__( | ||
n_features, n_dimensions, n_classes, device=device, dtype=dtype | ||
) | ||
|
||
self.batch_size = batch_size | ||
|
||
self.keys = Random(n_features, n_dimensions, device=device, dtype=dtype) | ||
self.levels = Level( | ||
n_levels, | ||
n_dimensions, | ||
low=min_level, | ||
high=max_level, | ||
device=device, | ||
dtype=dtype, | ||
) | ||
self.model = Centroid(n_dimensions, n_classes, device=device, dtype=dtype) | ||
|
||
def encoder(self, samples: Tensor) -> Tensor: | ||
return functional.hash_table(self.keys.weight, self.levels(samples)).sign() | ||
|
||
def fit(self, samples: Tensor, labels: LongTensor) -> Self: | ||
|
||
loader = DataLoader( | ||
TensorDataset(samples, labels), self.batch_size, shuffle=False | ||
) | ||
|
||
for samples, labels in loader: | ||
encoded = self.encoder(samples) | ||
self.model.add(encoded, labels) | ||
|
||
return self | ||
|
||
|
||
class AdaptHD(Classifier): | ||
r"""Implements `AdaptHD: Adaptive Efficient Training for Brain-Inspired Hyperdimensional Computing <https://ieeexplore.ieee.org/document/8918974>`_.""" | ||
|
||
model: Centroid | ||
|
||
def __init__( | ||
self, | ||
n_features: int, | ||
n_dimensions: int, | ||
n_classes: int, | ||
*, | ||
n_levels: int = 100, | ||
min_level: int = -1, | ||
max_level: int = 1, | ||
epochs: int = 120, | ||
lr: float = 0.035, | ||
batch_size: Union[int, None] = 1024, | ||
device: torch.device = None, | ||
dtype: torch.dtype = None | ||
) -> None: | ||
super().__init__( | ||
n_features, n_dimensions, n_classes, device=device, dtype=dtype | ||
) | ||
|
||
self.epochs = epochs | ||
self.lr = lr | ||
self.batch_size = batch_size | ||
|
||
self.keys = Random(n_features, n_dimensions, device=device, dtype=dtype) | ||
self.levels = Level( | ||
n_levels, | ||
n_dimensions, | ||
low=min_level, | ||
high=max_level, | ||
device=device, | ||
dtype=dtype, | ||
) | ||
self.model = Centroid(n_dimensions, n_classes, device=device, dtype=dtype) | ||
|
||
def encoder(self, samples: Tensor) -> Tensor: | ||
return functional.hash_table(self.keys.weight, self.levels(samples)).sign() | ||
|
||
def fit(self, samples: Tensor, labels: LongTensor) -> Self: | ||
|
||
loader = DataLoader( | ||
TensorDataset(samples, labels), self.batch_size, shuffle=True | ||
) | ||
|
||
for _ in range(self.epochs): | ||
for samples, labels in loader: | ||
encoded = self.encoder(samples) | ||
self.model.add_adapt(encoded, labels, lr=self.lr) | ||
|
||
return self | ||
|
||
|
||
# Adapted from: https://gitlab.com/biaslab/onlinehd/ | ||
class OnlineHD(Classifier): | ||
r"""Implements `OnlineHD: Robust, Efficient, and Single-Pass Online Learning Using Hyperdimensional System <https://ieeexplore.ieee.org/abstract/document/9474107>`_.""" | ||
|
||
encoder: Sinusoid | ||
model: Centroid | ||
|
||
def __init__( | ||
self, | ||
n_features: int, | ||
n_dimensions: int, | ||
n_classes: int, | ||
*, | ||
epochs: int = 120, | ||
lr: float = 0.035, | ||
batch_size: Union[int, None] = 1024, | ||
device: torch.device = None, | ||
dtype: torch.dtype = None | ||
) -> None: | ||
super().__init__( | ||
n_features, n_dimensions, n_classes, device=device, dtype=dtype | ||
) | ||
|
||
self.epochs = epochs | ||
self.lr = lr | ||
self.batch_size = batch_size | ||
|
||
self.encoder = Sinusoid(n_features, n_dimensions, device=device, dtype=dtype) | ||
self.model = Centroid(n_dimensions, n_classes, device=device, dtype=dtype) | ||
|
||
def fit(self, samples: Tensor, labels: LongTensor) -> Self: | ||
|
||
loader = DataLoader( | ||
TensorDataset(samples, labels), self.batch_size, shuffle=True | ||
) | ||
|
||
for _ in range(self.epochs): | ||
for samples, labels in loader: | ||
encoded = self.encoder(samples) | ||
self.model.add_online(encoded, labels, lr=self.lr) | ||
|
||
return self | ||
|
||
|
||
# Adapted from: https://github.com/jwang235/DistHD/ | ||
class DistHD(Classifier): | ||
r"""Implements `DistHD: A Learner-Aware Dynamic Encoding Method for Hyperdimensional Classification <https://ieeexplore.ieee.org/document/10247876>`_.""" | ||
|
||
encoder: Projection | ||
model: Centroid | ||
|
||
def __init__( | ||
self, | ||
n_features: int, | ||
n_dimensions: int, | ||
n_classes: int, | ||
*, | ||
n_regen:int = 20, | ||
regen_rate: float = 0.04, | ||
alpha: float = 0.5, | ||
beta: float = 1, | ||
theta: float = 0.25, | ||
epochs: int = 20, | ||
lr: float = 0.05, | ||
batch_size: Union[int, None] = 1024, | ||
device: torch.device = None, | ||
dtype: torch.dtype = None | ||
) -> None: | ||
super().__init__( | ||
n_features, n_dimensions, n_classes, device=device, dtype=dtype | ||
) | ||
|
||
self.n_regen = n_regen | ||
self.regen_rate = regen_rate | ||
self.alpha = alpha | ||
self.beta = beta | ||
self.theta = theta | ||
self.epochs = epochs | ||
self.lr = lr | ||
self.batch_size = batch_size | ||
|
||
self.encoder = Projection(n_features, n_dimensions, device=device, dtype=dtype) | ||
self.model = Centroid(n_dimensions, n_classes, device=device, dtype=dtype) | ||
|
||
def fit(self, samples: Tensor, labels: LongTensor) -> Self: | ||
|
||
n_regen_dims = math.ceil(self.regen_rate * self.n_dimensions) | ||
|
||
loader = DataLoader( | ||
TensorDataset(samples, labels), self.batch_size, shuffle=True | ||
) | ||
|
||
for _ in range(self.n_regen): | ||
for _ in range(self.epochs): | ||
for samples, labels in loader: | ||
encoded = self.encoder(samples) | ||
self.model.add_online(encoded, labels, lr=self.lr) | ||
|
||
scores = 0 | ||
for samples, labels in loader: | ||
scores += self.regen_score(samples, labels) | ||
|
||
regen_dims = torch.topk(scores, n_regen_dims, largest=False).indices | ||
self.model.weight.data[ : , regen_dims].zero_() | ||
self.encoder.weight.data[regen_dims, :].normal_() | ||
|
||
return self | ||
|
||
def regen_score(self, samples, labels): | ||
scores = self(samples) | ||
top2_preds = torch.topk(scores, k=2).indices | ||
pred1, pred2 = torch.unbind(top2_preds, dim=-1) | ||
wrong = pred1 != labels | ||
|
||
samples = samples[wrong] | ||
pred2 = pred2[wrong] | ||
labels = labels[wrong] | ||
pred1 = pred1[wrong] | ||
|
||
weight = F.normalize(self.model.weight, dim=1) | ||
|
||
# partial correct | ||
partial = pred2 == labels | ||
dist2corr = torch.abs(weight[labels[partial]] - samples[partial]) | ||
dist2incorr = torch.abs(weight[pred1[partial]] - samples[partial]) | ||
partial_dist = torch.sum((self.beta * dist2incorr - self.alpha * dist2corr), dim=0) | ||
|
||
# completely incorrect | ||
complete = pred2 != labels | ||
dist2corr = torch.abs(weight[labels[complete]] - samples[complete]) | ||
dist2incorr1 = torch.abs(weight[pred1[complete]] - samples[complete]) | ||
dist2incorr2 = torch.abs(weight[pred2[complete]] - samples[complete]) | ||
complete_dist = torch.sum((self.beta * dist2incorr1 + self.theta * dist2incorr2 - self.alpha * dist2corr), dim=0) | ||
|
||
return 0.5 * partial_dist + complete_dist | ||
|
||
|