Skip to content

Commit

Permalink
WIP add classify module
Browse files Browse the repository at this point in the history
  • Loading branch information
mikeheddes committed Mar 7, 2024
1 parent 549ad53 commit 5ec1c90
Show file tree
Hide file tree
Showing 3 changed files with 326 additions and 1 deletion.
2 changes: 1 addition & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@
"openpyxl",
],
packages=find_packages(exclude=["docs", "torchhd.tests", "examples"]),
python_requires=">=3.6, <4",
python_requires=">=3.8, <4",
project_urls={
"Source": "https://github.com/hyperdimensional-computing/torchhd",
"Documentation": "https://torchhd.readthedocs.io",
Expand Down
2 changes: 2 additions & 0 deletions torchhd/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@
import torchhd.embeddings as embeddings
import torchhd.structures as structures
import torchhd.models as models
import torchhd.classify as classify
import torchhd.memory as memory
import torchhd.datasets as datasets
import torchhd.utils as utils
Expand Down Expand Up @@ -92,6 +93,7 @@
"embeddings",
"structures",
"models",
"classify",
"memory",
"datasets",
"utils",
Expand Down
323 changes: 323 additions & 0 deletions torchhd/classify.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,323 @@
#
# MIT License
#
# Copyright (c) 2023 Mike Heddes, Igor Nunes, Pere Vergés, Denis Kleyko, and Danny Abraham
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
import math
from typing import Type, Self, Union, Optional, Literal, Callable, Iterable, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import TensorDataset, DataLoader
from torch import Tensor, LongTensor
from torch.nn.parameter import Parameter

import torchhd.functional as functional
from torchhd.embeddings import Random, Level, Projection, Sinusoid
from torchhd.models import Centroid


__all__ = [
"Classifier",
"Vanilla",
"AdaptHD",
"OnlineHD",
"DistHD",
]


class Classifier(nn.Module):

encoder: Callable[[Tensor], Tensor]
model: Callable[[Tensor], Tensor]

def __init__(
self,
n_features: int,
n_dimensions: int,
n_classes: int,
*,
device: torch.device = None,
dtype: torch.dtype = None
) -> None:
super().__init__()

self.n_features = n_features
self.n_dimensions = n_dimensions
self.n_classes = n_classes

def forward(self, samples: Tensor) -> Tensor:
return self.model(self.encoder(samples))

def fit(self, samples: Tensor, labels: LongTensor) -> Self:
raise NotImplementedError()

def predict(self, samples: Tensor) -> LongTensor:
return torch.argmax(self(samples), dim=-1)

def score(self, samples: Tensor, labels: LongTensor) -> float:
predictions = self.predict(samples)
return torch.mean(predictions == labels, dtype=torch.float).item()


class Vanilla(Classifier):

model: Centroid

def __init__(
self,
n_features: int,
n_dimensions: int,
n_classes: int,
*,
n_levels: int = 100,
min_level: int = -1,
max_level: int = 1,
batch_size: Union[int, None] = 1024,
device: torch.device = None,
dtype: torch.dtype = None
) -> None:
super().__init__(
n_features, n_dimensions, n_classes, device=device, dtype=dtype
)

self.batch_size = batch_size

self.keys = Random(n_features, n_dimensions, device=device, dtype=dtype)
self.levels = Level(
n_levels,
n_dimensions,
low=min_level,
high=max_level,
device=device,
dtype=dtype,
)
self.model = Centroid(n_dimensions, n_classes, device=device, dtype=dtype)

def encoder(self, samples: Tensor) -> Tensor:
return functional.hash_table(self.keys.weight, self.levels(samples)).sign()

def fit(self, samples: Tensor, labels: LongTensor) -> Self:

loader = DataLoader(
TensorDataset(samples, labels), self.batch_size, shuffle=False
)

for samples, labels in loader:
encoded = self.encoder(samples)
self.model.add(encoded, labels)

return self


class AdaptHD(Classifier):
r"""Implements `AdaptHD: Adaptive Efficient Training for Brain-Inspired Hyperdimensional Computing <https://ieeexplore.ieee.org/document/8918974>`_."""

model: Centroid

def __init__(
self,
n_features: int,
n_dimensions: int,
n_classes: int,
*,
n_levels: int = 100,
min_level: int = -1,
max_level: int = 1,
epochs: int = 120,
lr: float = 0.035,
batch_size: Union[int, None] = 1024,
device: torch.device = None,
dtype: torch.dtype = None
) -> None:
super().__init__(
n_features, n_dimensions, n_classes, device=device, dtype=dtype
)

self.epochs = epochs
self.lr = lr
self.batch_size = batch_size

self.keys = Random(n_features, n_dimensions, device=device, dtype=dtype)
self.levels = Level(
n_levels,
n_dimensions,
low=min_level,
high=max_level,
device=device,
dtype=dtype,
)
self.model = Centroid(n_dimensions, n_classes, device=device, dtype=dtype)

def encoder(self, samples: Tensor) -> Tensor:
return functional.hash_table(self.keys.weight, self.levels(samples)).sign()

def fit(self, samples: Tensor, labels: LongTensor) -> Self:

loader = DataLoader(
TensorDataset(samples, labels), self.batch_size, shuffle=True
)

for _ in range(self.epochs):
for samples, labels in loader:
encoded = self.encoder(samples)
self.model.add_adapt(encoded, labels, lr=self.lr)

return self


# Adapted from: https://gitlab.com/biaslab/onlinehd/
class OnlineHD(Classifier):
r"""Implements `OnlineHD: Robust, Efficient, and Single-Pass Online Learning Using Hyperdimensional System <https://ieeexplore.ieee.org/abstract/document/9474107>`_."""

encoder: Sinusoid
model: Centroid

def __init__(
self,
n_features: int,
n_dimensions: int,
n_classes: int,
*,
epochs: int = 120,
lr: float = 0.035,
batch_size: Union[int, None] = 1024,
device: torch.device = None,
dtype: torch.dtype = None
) -> None:
super().__init__(
n_features, n_dimensions, n_classes, device=device, dtype=dtype
)

self.epochs = epochs
self.lr = lr
self.batch_size = batch_size

self.encoder = Sinusoid(n_features, n_dimensions, device=device, dtype=dtype)
self.model = Centroid(n_dimensions, n_classes, device=device, dtype=dtype)

def fit(self, samples: Tensor, labels: LongTensor) -> Self:

loader = DataLoader(
TensorDataset(samples, labels), self.batch_size, shuffle=True
)

for _ in range(self.epochs):
for samples, labels in loader:
encoded = self.encoder(samples)
self.model.add_online(encoded, labels, lr=self.lr)

return self


# Adapted from: https://github.com/jwang235/DistHD/
class DistHD(Classifier):
r"""Implements `DistHD: A Learner-Aware Dynamic Encoding Method for Hyperdimensional Classification <https://ieeexplore.ieee.org/document/10247876>`_."""

encoder: Projection
model: Centroid

def __init__(
self,
n_features: int,
n_dimensions: int,
n_classes: int,
*,
n_regen:int = 20,
regen_rate: float = 0.04,
alpha: float = 0.5,
beta: float = 1,
theta: float = 0.25,
epochs: int = 20,
lr: float = 0.05,
batch_size: Union[int, None] = 1024,
device: torch.device = None,
dtype: torch.dtype = None
) -> None:
super().__init__(
n_features, n_dimensions, n_classes, device=device, dtype=dtype
)

self.n_regen = n_regen
self.regen_rate = regen_rate
self.alpha = alpha
self.beta = beta
self.theta = theta
self.epochs = epochs
self.lr = lr
self.batch_size = batch_size

self.encoder = Projection(n_features, n_dimensions, device=device, dtype=dtype)
self.model = Centroid(n_dimensions, n_classes, device=device, dtype=dtype)

def fit(self, samples: Tensor, labels: LongTensor) -> Self:

n_regen_dims = math.ceil(self.regen_rate * self.n_dimensions)

loader = DataLoader(
TensorDataset(samples, labels), self.batch_size, shuffle=True
)

for _ in range(self.n_regen):
for _ in range(self.epochs):
for samples, labels in loader:
encoded = self.encoder(samples)
self.model.add_online(encoded, labels, lr=self.lr)

scores = 0
for samples, labels in loader:
scores += self.regen_score(samples, labels)

regen_dims = torch.topk(scores, n_regen_dims, largest=False).indices
self.model.weight.data[ : , regen_dims].zero_()
self.encoder.weight.data[regen_dims, :].normal_()

return self

def regen_score(self, samples, labels):
scores = self(samples)
top2_preds = torch.topk(scores, k=2).indices
pred1, pred2 = torch.unbind(top2_preds, dim=-1)
wrong = pred1 != labels

samples = samples[wrong]
pred2 = pred2[wrong]
labels = labels[wrong]
pred1 = pred1[wrong]

weight = F.normalize(self.model.weight, dim=1)

# partial correct
partial = pred2 == labels
dist2corr = torch.abs(weight[labels[partial]] - samples[partial])
dist2incorr = torch.abs(weight[pred1[partial]] - samples[partial])
partial_dist = torch.sum((self.beta * dist2incorr - self.alpha * dist2corr), dim=0)

# completely incorrect
complete = pred2 != labels
dist2corr = torch.abs(weight[labels[complete]] - samples[complete])
dist2incorr1 = torch.abs(weight[pred1[complete]] - samples[complete])
dist2incorr2 = torch.abs(weight[pred2[complete]] - samples[complete])
complete_dist = torch.sum((self.beta * dist2incorr1 + self.theta * dist2incorr2 - self.alpha * dist2corr), dim=0)

return 0.5 * partial_dist + complete_dist


0 comments on commit 5ec1c90

Please sign in to comment.