-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfc_layer_pose.py
261 lines (179 loc) · 8.13 KB
/
fc_layer_pose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
"""Author: Hyung-Kwon Ko (hyungkwonko@gmail.com)"""
import os
import time
import copy
import logging
import argparse
from tqdm import tqdm
from datetime import datetime
import torch
import torch.nn as nn
from torch.nn.utils import spectral_norm
import torch.optim as optim
from torch.optim.lr_scheduler import ExponentialLR
from datasets.sg2 import StyleGAN2_Data
class MultiSequential(nn.Sequential):
def forward(self, *inputs):
for module in self._modules.values():
if type(inputs) == tuple:
inputs = module(*inputs)
else:
inputs = module(inputs)
return inputs
class AdaIN(nn.Module):
def __init__(self, z_dim=512, c_dim=136):
super().__init__()
self.affine = spectral_norm(nn.Linear(c_dim, z_dim))
self.linear = spectral_norm(nn.Linear(z_dim, 2))
def forward(self, z_in, c):
z_out = self.norm1d(z_in)
c_out = self.affine(c)
c_out = self.linear(c_out)
gamma, beta = c_out.chunk(2, 1)
z_out = (1 + gamma) * z_out + beta
return z_out, c
def norm1d(self, x, eps=1e-5):
return (x - torch.mean(x)) / (torch.std(x) + eps)
class FC_Block(nn.Module):
def __init__(self, z_dim, c_dim):
super().__init__()
self.adain = AdaIN(z_dim, c_dim)
self.fc = MultiSequential(
nn.LeakyReLU(0.2),
spectral_norm(nn.Linear(z_dim, z_dim)),
)
def forward(self, z_in, c):
z_out, c = self.adain(z_in, c)
z_out = self.fc(z_out)
return z_out, c
class FC_Model(nn.Module):
def __init__(self, z_dim=512, c_dim=136, n=6):
super().__init__()
self.model = MultiSequential(
*self._make_layer(FC_Block, z_dim, c_dim, n)
)
def _make_layer(self, block, z_dim, c_dim, n):
layers = []
for _ in range(n):
layers.append(block(z_dim, c_dim))
return layers
def forward(self, z, c):
out = self.model(z, c)
return out
def train(args):
logging.info("Loading Datasets...")
data = {
# 'train': StyleGAN2_Data(root=args.root, split='train', fname=args.lname), # 100k data
'train': StyleGAN2_Data(root=args.root, split='train_all', fname=args.lname), # 200k data
'val': StyleGAN2_Data(root=args.root, split='val', fname=args.lname)
}
data_loader = {
'train': torch.utils.data.DataLoader(data['train'], batch_size=args.batch_size, shuffle=False, num_workers=4, drop_last=False),
'val': torch.utils.data.DataLoader(data['val'], batch_size=args.batch_size, shuffle=False, num_workers=4, drop_last=False)
}
logging.info("Loading Complete!")
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = FC_Model(z_dim=args.z_dim, c_dim=args.c_dim, n=args.num_mlp_layers)
logging.info(model)
model = model.to(device)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
scheduler = ExponentialLR(optimizer, gamma=args.lr_gamma)
# scheduler = CosineAnnealingLR(optimizer, gamma=args.lr_gamma)
since = time.time()
val_loss_history = []
best_model_wts = copy.deepcopy(model.state_dict())
best_loss = float('inf')
for epoch in range(args.num_epochs):
logging.info('-' * 10)
logging.info(f'Epoch {epoch}/{args.num_epochs - 1} | Learning rate: {scheduler.get_last_lr()[-1]:.6f}')
for phase in ['train', 'val']:
if phase == 'train':
model.train()
else:
model.eval()
running_loss = 0.0
for batch in tqdm(data_loader[phase]):
latents = batch['latent'].to(device)
labels = batch['label'].to(device).float()
optimizer.zero_grad()
with torch.set_grad_enabled(phase == 'train'):
(outputs, _) = model(latents, labels)
loss = criterion(outputs, latents)
if phase == 'train':
loss.backward()
optimizer.step()
running_loss += loss.item() * latents.size(0)
epoch_loss = running_loss / len(data_loader[phase].dataset)
logging.info(f'{phase} Loss: {epoch_loss:.4f}')
if phase == 'val':
val_loss_history.append(epoch_loss)
if epoch_loss < best_loss:
best_loss = epoch_loss
best_model_wts = copy.deepcopy(model.state_dict())
torch.save(best_model_wts, os.path.join(args.ckpt_dir, f'model_pose_{args.lr}_{args.batch_size}_{args.num_mlp_layers}_{args.weight_decay}.pth'))
scheduler.step()
time_elapsed = time.time() - since
logging.info(f'Training complete in {time_elapsed // 60:.0f}m {time_elapsed % 60:.0f}s')
logging.info(f'Best val Loss: {best_loss:4f}')
model.load_state_dict(best_model_wts)
logging.info(val_loss_history)
logging.info('Save validation history')
logging.info('-' * 10)
logging.info('Successfully finished training!')
def test(args):
data = StyleGAN2_Data(root=args.root, split='test')
data_loader = torch.utils.data.DataLoader(data, batch_size=args.batch_size, shuffle=False, num_workers=4, drop_last=False)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = FC_Model(z_dim=args.z_dim, c_dim=args.c_dim, n=args.num_mlp_layers)
model.load_state_dict(torch.load(os.path.join(args.ckpt_dir, args.ckpt_fname)))
model = model.to(device)
criterion = nn.MSELoss()
model.eval()
running_loss = 0.0
for batch in tqdm(data_loader):
latents = batch['latent'].to(device)
labels = batch['label'].to(device)
with torch.no_grad():
(outputs, _) = model(latents, labels)
loss = criterion(outputs, latents)
running_loss += loss.item() * latents.size(0)
epoch_loss = running_loss / len(data_loader.dataset)
print(f'Loss: {epoch_loss:.4f}')
print(f"Sample latents {latents[0][:7].cpu()}")
print(f"Sample output: {outputs[0][:7].cpu()}")
def main():
parser = argparse.ArgumentParser("MLP layer (auxiliary network) train/test")
parser.add_argument('--mode', type=str, default='train', choices=['train', 'test'], help='train/test')
parser.add_argument('--z_dim', type=int, default=512, help='latent_dim')
parser.add_argument('--c_dim', type=int, default=3, help='class_dim')
parser.add_argument('--num_mlp_layers', type=int, default=6, help='number of mlp layers')
parser.add_argument('--batch_size', type=int, default=8, help='batch size')
parser.add_argument('--num_epochs', type=int, default=25, help='number of epochs to run')
parser.add_argument('--lr', type=float, default=2e-4, help='learning rate')
parser.add_argument('--lr_gamma', type=float, default=0.998, help='gamma for learning rate schedule')
parser.add_argument('--weight_decay', type=float, default=0.0, help='l2 norm')
parser.add_argument('--root', type=str, default='data', help='training data dir')
parser.add_argument('--lname', type=str, default='pose', help='label name')
parser.add_argument('--ckpt_dir', type=str, default='ckpt', help='model checkpoint folder path')
parser.add_argument('--ckpt_fname', type=str, default='model_0.0002_8_6_0.0.pth', help='model checkpoint save filename')
parser.add_argument('--log_dir', type=str, default='log', help='save directory for log file')
args = parser.parse_args()
os.makedirs(args.ckpt_dir, exist_ok=True)
os.makedirs(args.log_dir, exist_ok=True)
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s [%(levelname)s] %(message)s',
datefmt='%Y-%m-%d,%H:%M:%S',
handlers=[
logging.FileHandler(os.path.join(args.log_dir, f'senet_{datetime.now().strftime("%H:%M:%S")}.log')),
logging.StreamHandler()
]
)
logging.info(f"Set Arguments: {args}")
if args.mode == 'train':
train(args)
else:
test(args)
if __name__ == "__main__":
main()