-
Notifications
You must be signed in to change notification settings - Fork 3
/
TTables.h
421 lines (364 loc) · 12.5 KB
/
TTables.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
/*
EGYPT Toolkit for Statistical Machine Translation
Written by Yaser Al-Onaizan, Jan Curin, Michael Jahr, Kevin Knight, John Lafferty, Dan Melamed, David Purdy, Franz Och, Noah Smith, and David Yarowsky.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
USA.
*/
/* --------------------------------------------------------------------------*
* *
* Module : TTables *
* *
* Prototypes File: TTables.h *
* *
* Objective: Defines clases and methods for handling I/O for Probability & *
* Count tables and also alignment tables *
*****************************************************************************/
#ifndef _ttables_h
#define _ttables_h 1
#include "defs.h"
#include "vocab.h"
#include <cassert>
#include <iostream>
#include <algorithm>
#include <functional>
#include <map>
#include <set>
#include "Vector.h"
#include <utility>
#include <fstream>
#include "Globals.h"
#include "LM.h"
/* The tables defined in the following classes are defined as hash tables. For
example. the t-table is a hash function of a word pair; an alignment is
a hash function of a vector of integer numbers (sentence positions) and so
on */
/*----------- Defnition of Hash Function for class tmodel ------- -----------*/
typedef pair<WordIndex, WordIndex> wordPairIds;
class hashpair : public unary_function< pair<WordIndex, WordIndex>, size_t >
{
public:
size_t operator() (const pair<WordIndex, WordIndex>& key) const
{
return (size_t) MAX_W*key.first + key.second; /* hash function and it
is guarnteed to have
unique id for each
unique pair */
}
};
/* ------------------ Class Prototype Definitions ---------------------------*
Class Name: tmodel
Objective: This defines the underlying data structur for t Tables and t
Count Tables. They are defined as a hash table. Each entry in the hash table
is the probability (P(fj/ei) ) or count collected for ( C(fj/ei)). The
probability and the count are represented as log integer probability as
defined by the class LogProb .
This class is used to represents t Tables (probabiliity) and n (fertility
Tables and also their corresponding count tables .
*---------------------------------------------------------------------------*/
//typedef float COUNT ;
//typedef LogProb PROB ;
template <class COUNT, class PROB>
class LpPair {
public:
COUNT count ;
PROB prob ;
public: // constructor
LpPair():count(0), prob(0){} ;
LpPair(COUNT c, PROB p):count(c), prob(p){};
} ;
#ifdef BINARY_SEARCH_FOR_TTABLE
template<class T>
T*mbinary_search(T*x,T*y,unsigned int val)
{
if( y-x==0 )
return 0;
if( x->first==val)
return x;
if( y-x<2 )
return 0;
T*mid=x+(y-x)/2;
if( val < mid->first )
return mbinary_search(x,mid,val);
else
return mbinary_search(mid,y,val);
}
template<class T>
const T*mbinary_search(const T*x,const T*y,unsigned int val)
{
if( y-x==0 )
return 0;
if( x->first==val)
return x;
if( y-x<2 )
return 0;
const T*mid=x+(y-x)/2;
if( val < mid->first )
return mbinary_search(x,mid,val);
else
return mbinary_search(mid,y,val);
}
template <class COUNT, class PROB>
class tmodel{
typedef LpPair<COUNT, PROB> CPPair;
public:
int noEnglishWords; // total number of unique source words
int noFrenchWords; // total number of unique target words
//vector<pair<unsigned int,CPPair> > fs;
//vector<unsigned int> es;
LM _lm;
vector< vector<pair<unsigned int, CPPair> >* > lexmat;
void copyFromLM();
void erase(WordIndex e, WordIndex f)
{
CPPair *p=find(e,f);
if(p)
*p=CPPair(0,0);
};
CPPair*find(int e,int f)
{
//pair<unsigned int,CPPair> *be=&(fs[0])+es[e];
//pair<unsigned int,CPPair> *en=&(fs[0])+es[e+1];
pair<unsigned int,CPPair> *be=&(*lexmat[e])[0];
pair<unsigned int,CPPair> *en=&(*lexmat[e])[0]+(*lexmat[e]).size();
pair<unsigned int,CPPair> *x= mbinary_search(be,en,f);
if( x==0 )
{
//cerr << "A:DID NOT FIND ENTRY: " << e << " " << f << '\n';
//abort();
return 0;
}
return &(x->second);
}
const CPPair*find(int e,int f)const
{
const pair<unsigned int,CPPair> *be=&(*lexmat[e])[0];
const pair<unsigned int,CPPair> *en=&(*lexmat[e])[0]+(*lexmat[e]).size();
//const pair<unsigned int,CPPair> *be=&(fs[0])+es[e];
//const pair<unsigned int,CPPair> *en=&(fs[0])+es[e+1];
const pair<unsigned int,CPPair> *x= mbinary_search(be,en,f);
if( x==0 )
{
//cerr << "B:DID NOT FIND ENTRY: " << e << " " << f << '\n';
//abort();
return 0;
}
return &(x->second);
}
public:
void insert(WordIndex e, WordIndex f, COUNT cval=0.0, PROB pval = 0.0){
*find(e,f)=CPPair(cval,pval);
}
CPPair*getPtr(int e,int f){return find(e,f);}
tmodel(const string&fn)
{
int count=0,count2=0;
ifstream infile2(fn.c_str());
int e,f,olde=-1,oldf=-1;
pair<unsigned int,CPPair> cp;
vector< pair<unsigned int,CPPair> > cps;
while(infile2>>e>>f)
{
cp.first=f;
assert(e>=olde);
assert(e>olde ||f>oldf);
if( e!=olde&&olde>=0 )
{
int oldsize=lexmat.size();
lexmat.resize(olde+1);
for(unsigned int i=oldsize;i<lexmat.size();++i)
lexmat[i]=0;
lexmat[olde]=new vector< pair<unsigned int,CPPair> > (cps);
cps.clear();
if( !((*lexmat[olde]).size()==(*lexmat[olde]).capacity()) )
cerr << "eRROR: waste of memory: " << (*lexmat[olde]).size() << " " << (*lexmat[olde]).capacity() << endl;
count2+=lexmat[olde]->capacity();
}
cps.push_back(cp);
olde=e;
oldf=f;
count++;
}
lexmat.resize(olde+1);
lexmat[olde]=new vector< pair<unsigned int,CPPair> > (cps);
count2+=lexmat[olde]->capacity();
cout << "There are " << count << " " << count2 << " entries in table" << '\n';
}
/* tmodel(const string&fn)
{
size_t count=0;
{
ifstream infile1(fn.c_str());
if( !infile1 )
{
cerr << "ERROR: can't read coocurrence file " << fn << '\n';
abort();
}
int e,f;
while(infile1>>e>>f)
count++;
}
cout << "There are " << count << " entries in table" << '\n';
ifstream infile2(fn.c_str());
fs.resize(count);
int e,f,olde=-1,oldf=-1;
pair<unsigned int,CPPair> cp;
count=0;
while(infile2>>e>>f)
{
assert(e>=olde);
assert(e>olde ||f>oldf);
if( e!=olde )
{
es.resize(e+1);
for(unsigned int i=olde+1;int(i)<=e;++i)
es[i]=count;
}
cp.first=f;
assert(count<fs.size());
fs[count]=cp;
//fs.push_back(cp);
olde=e;
oldf=f;
count++;
}
assert(count==fs.size());
es.push_back(fs.size());
cout << fs.size() << " " << count << " coocurrences read" << '\n';
}*/
void incCount(WordIndex e, WordIndex f, COUNT inc)
{
if( inc )
{
CPPair *p=find(e,f);
if( p )
{
p->count += inc ;
//cerr<<f<<" "<<e<<" "<<inc<<endl;
//_lm.addBigram(f,e,inc);
}
}
}
PROB getProb(WordIndex e, WordIndex f) const
{
const CPPair *p=find(e,f);
if( p )
return max(p->prob, PROB_SMOOTH);
else
return PROB_SMOOTH;
}
COUNT getCount(WordIndex e, WordIndex f) const
{
const CPPair *p=find(e,f);
if( p )
return p->count;
else
return 0.0;
}
void printProbTable(const char* filename, const Vector<WordEntry>&, const Vector<WordEntry>&,bool actual) const;
void printCountTable(const char* filename, const Vector<WordEntry>&, const Vector<WordEntry>&,bool actual) const;
void printProbTableInverse(const char *filename,
const Vector<WordEntry>& evlist,
const Vector<WordEntry>& fvlist,
const double eTotal,
const double fTotal,
const bool actual = false ) const;
void normalizeTable(const vcbList&engl, const vcbList&french, int iter=2);
void readProbTable(const char *filename);
};
#else
template <class COUNT, class PROB>
class tmodel{
typedef LpPair<COUNT, PROB> CPPair;
public:
int noEnglishWords; // total number of unique source words
int noFrenchWords; // total number of unique target words
hash_map<wordPairIds, CPPair, hashpair, equal_to<wordPairIds> > ef;
void erase(WordIndex e, WordIndex f)
// In: a source and a target token ids.
// removes the entry with that pair from table
{
ef.erase(wordPairIds(e, f));
};
public:
Vector<PROB> total2;
Vector<int> nFrench;
Vector<int> nEng;
// methods;
// insert: add entry P(fj/ei) to the hash function, Default value is 0.0
void insert(WordIndex e, WordIndex f, COUNT cval=0.0, PROB pval = 0.0){
ef[wordPairIds(e, f)].count = cval ;
ef[wordPairIds(e, f)].prob = pval ;
}
// returns a reference to the word pair, if does not exists, it creates it.
CPPair&getRe(WordIndex e, WordIndex f)
{return ef[wordPairIds(e, f)];}
// returns a pointer to an existing word pair. if pair does not exists,
// the method returns the zero pointer (NULL)
CPPair*getPtr(WordIndex e, WordIndex f)
{
// look up this pair and return its position
typename hash_map<wordPairIds, CPPair, hashpair, equal_to<wordPairIds> >::iterator i = ef.find(wordPairIds(e, f));
if(i != ef.end()) // if it exists, return a pointer to it.
return(&((*i).second));
else return(0) ; // else return NULL pointer
}
void incCount(WordIndex e, WordIndex f, COUNT inc)
// increments the count of the given word pair. if the pair does not exist,
// it creates it with the given value.
{
if( inc )
ef[wordPairIds(e, f)].count += inc ;
}
PROB getProb(WordIndex e, WordIndex f) const
// read probability value for P(fj/ei) from the hash table
// if pair does not exist, return floor value PROB_SMOOTH
{
typename hash_map<wordPairIds, CPPair, hashpair, equal_to<wordPairIds> >::const_iterator i= ef.find(wordPairIds(e, f));
if(i == ef.end())
return PROB_SMOOTH;
else
return max(((*i).second).prob, PROB_SMOOTH);
}
COUNT getCount(WordIndex e, WordIndex f) const
/* read count value for entry pair (fj/ei) from the hash table */
{
typename hash_map<wordPairIds, CPPair, hashpair, equal_to<wordPairIds> >::const_iterator i= ef.find(wordPairIds(e, f));
if(i == ef.end())
return 0;
else
return ((*i).second).count;
}
inline const hash_map<wordPairIds, CPPair, hashpair, equal_to<wordPairIds> >& getHash(void) const {return ef;};
/* get a refernece to the hash table */
//inline void resize(WordIndex n) {ef.resize(n);};
// to resize he hash table
void printProbTable(const char* filename, const Vector<WordEntry>&, const Vector<WordEntry>&,bool actual) const;
void printCountTable(const char* filename, const Vector<WordEntry>&, const Vector<WordEntry>&,bool actual) const;
// print the t table to the given file but this time print actual source and
// target words instead of thier token ids
void printProbTableInverse(const char *filename,
const Vector<WordEntry>& evlist,
const Vector<WordEntry>& fvlist,
const double eTotal,
const double fTotal,
const bool actual = false ) const;
// dump inverse of t table (i.e P(ei/fj)) to the given file name,
// if the given flag is true then actual words are printed not token ids
void normalizeTable(const vcbList&engl, const vcbList&french, int iter=2);
// to norlmalize the table i.e. make sure P(fj/ei) for all j is equal to 1
void readProbTable(const char *filename);
// void readAsFertilityTable(const char *filename);
};
/*--------------- End of Class Definition for tmodel -----------------------*/
#endif
#endif