-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathconvert_to_onnx.py
49 lines (37 loc) · 2 KB
/
convert_to_onnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import torch
import torch.nn.functional as F
import numpy as np
import cv2
from imread_from_url import imread_from_url
from nets import Model
if __name__ == '__main__':
model_path = "models/crestereo_eth3d.pth"
model = Model(max_disp=256, mixed_precision=False, test_mode=True)
model.load_state_dict(torch.load(model_path), strict=True)
model.eval()
in_h, in_w = (480, 640)
t1_half = torch.rand(1, 3, in_h//2, in_w//2)
t2_half = torch.rand(1, 3, in_h//2, in_w//2)
t1 = torch.rand(1, 3, in_h, in_w)
t2 = torch.rand(1, 3, in_h, in_w)
flow_init = torch.rand(1, 2, in_h//2, in_w//2)
# Export the model
torch.onnx.export(model,
(t1, t2, flow_init),
"crestereo.onnx", # where to save the model (can be a file or file-like object)
export_params=True, # store the trained parameter weights inside the model file
opset_version=12, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names = ['left', 'right','flow_init'], # the model's input names
output_names = ['output'])
# Export the model without init_flow (it takes a lot of time)
# !! Does not work prior to pytorch 1.12 (confirmed working on pytorch 2.0.0)
# Ref: https://github.com/pytorch/pytorch/pull/73760
torch.onnx.export(model,
(t1_half, t2_half),
"crestereo_without_flow.onnx", # where to save the model (can be a file or file-like object)
export_params=True, # store the trained parameter weights inside the model file
opset_version=12, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names = ['left', 'right'], # the model's input names
output_names = ['output'])