-
Notifications
You must be signed in to change notification settings - Fork 3
/
slides-bayreuth2018.tex
580 lines (488 loc) · 17.6 KB
/
slides-bayreuth2018.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
\documentclass[12pt,utf8,notheorems,compress,t]{beamer}
\usepackage{etex}
\usepackage[english]{babel}
\usepackage{mathtools}
\usepackage{booktabs}
\usepackage{stmaryrd}
\usepackage{array}
\usepackage{ragged2e}
\usepackage{multicol}
\usepackage{tabto}
\usepackage{xstring}
\usepackage{ifthen}
\usepackage{soul}\setul{0.3ex}{}
\usepackage[all]{xy}
\xyoption{rotate}
\usepackage{tikz}
\usetikzlibrary{calc,shapes,shapes.callouts,shapes.arrows,patterns,fit,backgrounds,decorations.pathmorphing}
\hypersetup{colorlinks=true}
\usepackage{multimedia}
\newcommand{\video}[2]{\movie[width=#2,height=#2,autostart,loop,poster]{}{#1}}
\hypersetup{colorlinks=false}
\usepackage{pifont}
\newcommand{\cmark}{\ding{51}}
\newcommand{\xmark}{\ding{55}}
\DeclareSymbolFont{extraup}{U}{zavm}{m}{n}
\DeclareMathSymbol{\varheart}{\mathalpha}{extraup}{86}
\graphicspath{{images/}}
\usepackage[protrusion=true,expansion=true]{microtype}
\setlength\parskip{\medskipamount}
\setlength\parindent{0pt}
\title{New reduction techniques in commutative algebra driven by logical methods}
\author{Ingo Blechschmidt}
\date{September 15th, 2018}
\useinnertheme[shadow=true]{rounded}
\setbeamerfont{block title}{size={}}
\useinnertheme{rectangles}
\usecolortheme{orchid}
\usecolortheme{seahorse}
\definecolor{mypurple}{RGB}{150,0,255}
\setbeamercolor{structure}{fg=mypurple}
\definecolor{myred}{RGB}{150,0,0}
\setbeamercolor*{title}{bg=myred,fg=white}
\setbeamercolor*{titlelike}{bg=myred,fg=white}
\setbeamercolor{frame}{bg=black}
\usefonttheme{serif}
\usepackage[T1]{fontenc}
\usepackage{libertine}
\newcommand{\A}{\mathcal{A}}
\renewcommand{\AA}{\mathbb{A}}
\newcommand{\E}{\mathcal{E}}
\newcommand{\F}{\mathcal{F}}
\renewcommand{\G}{\mathcal{G}}
\newcommand{\GG}{\mathbb{G}}
\renewcommand{\O}{\mathcal{O}}
\newcommand{\K}{\mathcal{K}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\TT}{\mathbb{T}}
\newcommand{\PP}{\mathbb{P}}
\newcommand{\ZZ}{\mathbb{Z}}
\renewcommand{\P}{\mathcal{P}}
\newcommand{\ppp}{\mathfrak{p}}
\newcommand{\defeq}{\vcentcolon=}
\newcommand{\defeqv}{\vcentcolon\equiv}
\newcommand{\Sh}{\mathrm{Sh}}
\newcommand{\GL}{\mathrm{GL}}
\newcommand{\Zar}{\mathrm{Zar}}
\newcommand{\op}{\mathrm{op}}
\newcommand{\Set}{\mathrm{Set}}
\newcommand{\Eff}{\mathrm{Ef{}f}}
\newcommand{\Sch}{\mathrm{Sch}}
\newcommand{\Aff}{\mathrm{Aff}}
\newcommand{\LRS}{\mathrm{LRS}}
\newcommand{\Hom}{\mathrm{Hom}}
\newcommand{\Spec}{\mathrm{Spec}}
\newcommand{\lra}{\longrightarrow}
\newcommand{\RelSpec}{\operatorname{Spec}}
\renewcommand{\_}{\mathpunct{.}}
\newcommand{\?}{\,{:}\,}
\newcommand{\speak}[1]{\ulcorner\text{\textnormal{#1}}\urcorner}
\newcommand{\ull}[1]{\underline{#1}}
\newcommand{\affl}{\ensuremath{{\ull{\AA}^1}}}
\newcommand{\Ll}{\vcentcolon\!\Longleftrightarrow}
\newcommand{\inv}{inv.\@}
\newcommand{\seq}{\vdash_{\!\!\!\vec x}}
\setbeamertemplate{blocks}[rounded][shadow=false]
% Adapted from https://latex.org/forum/viewtopic.php?t=2251 (Stefan Kottwitz)
\newenvironment<>{hilblock}{
\begin{center}
\begin{minipage}{9.05cm}
\setlength{\textwidth}{9.05cm}
\begin{actionenv}#1
\def\insertblocktitle{}
\par
\usebeamertemplate{block begin}}{
\par
\usebeamertemplate{block end}
\end{actionenv}
\end{minipage}
\end{center}}
\newcommand{\bignumber}[1]{
\renewcommand{\insertenumlabel}{#1}\scalebox{1.5}{\usebeamertemplate{enumerate item}}
}
\newcommand{\bigheart}{\includegraphics{heart}}
\newenvironment{changemargin}[2]{%
\begin{list}{}{%
\setlength{\topsep}{0pt}%
\setlength{\leftmargin}{#1}%
\setlength{\rightmargin}{#2}%
\setlength{\listparindent}{\parindent}%
\setlength{\itemindent}{\parindent}%
\setlength{\parsep}{\parskip}%
}%
\item[]}{\end{list}}
\tikzset{
invisible/.style={opacity=0,text opacity=0},
visible on/.style={alt={#1{}{invisible}}},
alt/.code args={<#1>#2#3}{%
\alt<#1>{\pgfkeysalso{#2}}{\pgfkeysalso{#3}}}
}
\newcommand{\pointthis}[3]{%
\tikz[remember picture,baseline]{
\node[anchor=base,inner sep=0,outer sep=0] (#2) {#2};
\node[visible on=#1,overlay,rectangle callout,rounded corners,callout relative pointer={(0.3cm,0.5cm)},fill=blue!20] at ($(#2.north)+(-0.1cm,-1.1cm)$) {#3};
}%
}
% Adapted from https://latex.org/forum/viewtopic.php?t=2251 (Stefan Kottwitz)
\newenvironment<>{varblock}[2]{
\begin{center}
\begin{minipage}{#1}
%\setlength{\textwidth}{#1}
\begin{actionenv}#3
\def\insertblocktitle{\centering #2}
\par
\usebeamertemplate{block begin}}{
\par
\usebeamertemplate{block end}
\end{actionenv}
\end{minipage}
\end{center}}
\setbeamertemplate{frametitle}{%
\vskip1.2em%
\leavevmode%
\begin{beamercolorbox}[dp=1ex,center]{}%
\usebeamercolor[fg]{item}{\textbf{{\Large \insertframetitle}}}
\end{beamercolorbox}%
}
\setbeamertemplate{navigation symbols}{}
\newcounter{framenumberpreappendix}
\newcommand{\backupstart}{
\setcounter{framenumberpreappendix}{\value{framenumber}}
}
\newcommand{\backupend}{
\addtocounter{framenumberpreappendix}{-\value{framenumber}}
\addtocounter{framenumber}{\value{framenumberpreappendix}}
}
\newcommand{\mynav}[3]{%
\begin{beamercolorbox}[wd=\paperwidth,ht=2.25ex]{}%
\begin{columns}
\begin{column}{0.333\textwidth}
\raggedright
\textcolor{#1}{\qquad\qquad Summary}
\par
\end{column}
\begin{column}{0.333\textwidth}
\centering
\textcolor{#2}{The forcing model}
\par
\end{column}
\begin{column}{0.333\textwidth}
\raggedleft
\textcolor{#3}{Revisiting the test cases \qquad\qquad}
\par
\end{column}
\end{columns}
\end{beamercolorbox}%
}
\newcommand{\insertframeextra}{}
\setbeamertemplate{footline}{%
\begin{beamercolorbox}[wd=\paperwidth,ht=2.25ex,dp=1ex,right,rightskip=1mm,leftskip=1mm]{}%
% \inserttitle
\hfill
\insertframenumber\insertframeextra\,/\,\inserttotalframenumber
\end{beamercolorbox}%
\vskip0pt%
}
\newcommand{\hil}[1]{{\usebeamercolor[fg]{item}{\textbf{#1}}}}
\newcommand{\bad}[1]{\textcolor{red!90}{\textnormal{#1}}}
\begin{document}
\addtocounter{framenumber}{-1}
\setbeamertemplate{headline}{\mynav{gray}{gray}{gray}}
{\usebackgroundtemplate{\begin{minipage}{\paperwidth}\vspace*{4.95cm}\includegraphics[width=\paperwidth]{topos-horses}\end{minipage}}
\begin{frame}[c]
\centering
\bigskip
\includegraphics[width=0.4\textwidth]{external-internal-small}
\bigskip
\hil{New reduction techniques in commutative algebra driven by logical methods}
\scriptsize
\textit{-- interruptions welcome at any point --}
\bigskip
Ingo Blechschmidt \\
University of Verona
\bigskip
Colloquium Logicum 2018 in Bayreuth \\
September 15th, 2018
\par
\end{frame}}
\section{Summary}
\setbeamertemplate{headline}{\mynav{black}{gray}{gray}}
\begin{frame}{Summary}
\vspace*{-1em}
\visible<4>{
\begin{changemargin}{-2.0em}{-0.5em}
\begin{itemize}
\item \ \\[-1.2em]\mbox{For any reduced ring~$A$, there is a ring~$A^\sim$ in a certain topos with}
\[ \models \bigl(\forall x\?A^\sim\_ \neg(\exists y\?A^\sim\_ xy = 1) \Rightarrow x = 0\bigr). \]
\item This semantics is sound with respect to intuitionistic logic.
\item \ \\[-1.2em]\mbox{It has uses in classical and constructive commutative
algebra.}
\end{itemize}
\end{changemargin}
}
\vspace*{-2em}
\begin{columns}[t]
\begin{column}[t]{0.51\textwidth}
\centering
\begin{varblock}{\textwidth}{A baby example}
\justifying
Let~$M$ be an injective matrix with more columns than rows over a ring~$A$.
Then~$1 = 0$ in~$A$.
\end{varblock}
\only<1>{
\scalebox{0.8}{$\begin{pmatrix}
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot
\end{pmatrix}$}
}
\visible<2->{
\justifying
\textbf{Proof.} \bad{Assume not.} Then there is a \bad{minimal
prime ideal} $\ppp \subseteq A$. The matrix is injective over the \bad{field}~$A_\ppp = A[(A
\setminus \ppp)^{-1}]$; contradiction to basic linear algebra.
}
\end{column}
\begin{column}[t]{0.46\textwidth}
\centering
\begin{varblock}{\textwidth}{Generic freeness\phantom{p}}
\justifying
Generically, any finitely generated module over a reduced ring
is free.\phantom{g}
\end{varblock}
\only<1-2>{{
\scriptsize\raggedright
(A ring is reduced iff $x^n=0$ implies $x=0$.)
\par
}}
\only<1-2>{\includegraphics[width=0.73\textwidth]{generic-freeness}}
\visible<3->{
\justifying
\textbf{Proof.} See [Stacks Project].
}
\end{column}
\end{columns}
\end{frame}
\section{The forcing model}
\setbeamertemplate{headline}{\mynav{gray}{black}{gray}}
\renewcommand{\insertframeextra}{a}
\begin{frame}{The Kripke--Joyal semantics}
\small
\mbox{\!\!\!Recall~$A[f^{-1}] = \bigl\{ \frac{u}{f^n} \,|\, u \in A, n \in \NN \bigr\}$.
Let~``$\models \varphi$'' be short for~``$1 \models \varphi$''.}
\[ \renewcommand{\arraystretch}{1.25}\begin{array}{@{}l@{\quad}c@{\quad}l@{}}
f \models \top &\text{iff}& \top \\
f \models \bot &\text{iff}& \text{$f$ is nilpotent} \\
f \models x = y &\text{iff}& x = y \in A[f^{-1}] \\
f \models \varphi \wedge \psi &\text{iff}&
\text{$f \models \varphi$ and $f \models \psi$} \\
f \models \varphi \vee \psi &\text{iff}&
\text{there exists a partition~$f^n = fg_1 + \cdots + fg_m$ with,} \\
&&\quad\text{for each~$i$, $fg_i \models \varphi$ or $fg_i \models \psi$} \\
f \models \varphi \Rightarrow \psi &\text{iff}&
\text{for all~$g \in A$, $fg \models \varphi$ implies $fg \models \psi$} \\
f \models \forall x\?A^\sim\_ \varphi &\text{iff}&
\text{for all~$g \in A$ and all $x_0 \in A[(fg)^{-1}]$, $fg \models \varphi[x_0/x]$} \\
f \models \exists x\?A^\sim\_ \varphi &\text{iff}&
\text{there exists a partition~$f^n = fg_1 + \cdots + fg_m$ with,} \\
&&\quad\text{for each~$i$, $fg_i \models \varphi[x_0/x]$ for some~$x_0 \in A[(fg_i)^{-1}]$}
\end{array} \]
\end{frame}
\renewcommand{\insertframeextra}{b}
\addtocounter{framenumber}{-1}
\begin{frame}{The little Zariski topos of a ring}
Let~$A$ be a reduced commutative ring ($x^n = 0 \Rightarrow x = 0$).
The \hil{little Zariski topos} of~$A$ is equivalently
\vspace*{-0.5em}
\begin{itemize}
\item the topos of sheaves over~$\Spec(A)$,
\item the locale given by the frame of radical ideals of~$A$,
\item the classifying topos of local localizations of~$A$ or
\item the classifying topos of prime filters of~$A$
\end{itemize}
\vspace*{-0.5em}
and contains a \hil{mirror image} of~$A$, the sheaf of rings $A^\sim$.
\vspace*{-1.5em}
\small
\begin{columns}
\begin{column}{0.5\textwidth}
\begin{varblock}{\textwidth}{}
\justifying
Assuming the Boolean prime ideal theorem, a first-order
formula ``$\forall \ldots \forall\_ (\cdots \Longrightarrow \cdots\!\,)$'',
where the two subformulas may not contain~``$\Rightarrow$'' and~``$\forall$'',
holds for~$A^\sim$ iff it holds for all stalks~$A_\ppp$.
\end{varblock}
\end{column}
\begin{column}{0.5\textwidth}
\begin{varblock}{\textwidth}{}
$A^\sim$ inherits any property of~$A$ which is
\hil{localization-stable}.
\end{varblock}
\vspace*{-1.7em}
\setbeamercolor{block body}{bg=red!30}
\setbeamercolor{structure}{fg=purple}
\begin{varblock}{\textwidth}{}
$A^\sim$ is a \hil{local ring} and a \hil{field}.
$A^\sim$ has \hil{$\boldsymbol{\neg\neg}$-stable equality}.
\mbox{$A^\sim$ is \hil{anonymously Noetherian}.}\\[-1.2em]
\end{varblock}
\end{column}
\end{columns}
\visible<2>{\begin{tikzpicture}[overlay]
\draw[fill=white, draw=white, opacity=0.85] (-1,0) rectangle (\paperwidth,7.4);
\node[anchor=south west,inner sep=0] (image) at (0,0.8) {\vbox{
\centering
\includegraphics[width=0.9\textwidth]{tierney-on-the-spectrum-of-a-ringed-topos} \\
\footnotesize
Miles Tierney. On the spectrum of a ringed topos. 1976.
}};
\end{tikzpicture}}
\end{frame}
\renewcommand{\insertframeextra}{}
\section{Revisiting the test cases}
\setbeamertemplate{headline}{\mynav{gray}{gray}{black}}
\begin{frame}{Revisiting the test cases}
\vspace*{-1em}
Let~$A$ be a reduced commutative ring ($x^n = 0 \Rightarrow x = 0$). \\
Let~$A^\sim$ be its mirror image in the little Zariski topos.
\begin{columns}[t]
\begin{column}[t]{0.48\textwidth}
\centering
\scalebox{0.5}{$\begin{pmatrix}
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot
\end{pmatrix}$}
\vspace*{-1em}
\begin{varblock}{\textwidth}{A baby example}
\justifying
Let~$M$ be an injective matrix over~$A$ with more columns than rows.
Then~$1 = 0$ in~$A$.
\end{varblock}
\justifying
\textbf{Proof.} $M$ is also injective as a matrix over~$A^\sim$.
Since~$A^\sim$ is a field, this is a contradiction by basic linear
algebra. Thus~$\models \bot$. This amounts to~$1 = 0$ in~$A$.
\end{column}
\begin{column}[t]{0.57\textwidth}
\centering
\includegraphics[height=1.9em]{generic-freeness}
\vspace*{-1em}
\begin{varblock}{\textwidth}{Generic freeness\phantom{p}}
\justifying
Let~$M$ be a finitely generated~$A$-module.
If~$f = 0$ is the only element of~$A$ such that~$M[f^{-1}]$ is a
free~$A[f^{-1}]$-module, then~$1 = 0$ in~$A$.
\end{varblock}
\vspace*{-0.1em}
\justifying
\textbf{Proof.} The claim amounts to \mbox{$\models
\text{``$M^\sim$}$}$\text{
is \hil{not not} free''}$. Since~$A^\sim$ is a field, this follows from
basic linear algebra.
\end{column}
\end{columns}
\end{frame}
\backupstart
\setbeamertemplate{headline}{\mynav{gray}{gray}{gray}}
{\usebackgroundtemplate{\begin{minipage}{\paperwidth}\vspace*{4.95cm}\includegraphics[width=\paperwidth]{topos-horses}\end{minipage}}
\begin{frame}
\bigskip
\centering
\includegraphics[height=3em]{heart}
\par
\raggedright
The Zariski topos and related toposes have applications in:
\begin{itemize}
\item classical algebra and classical algebraic geometry
\item constructive algebra and constructive algebraic geometry
\item synthetic algebraic geometry (``schemes are just sets'')
\end{itemize}
Connections with:
\begin{itemize}
\item understanding quasicoherence
\item the age-old mystery of nongeometric sequents
\end{itemize}
\end{frame}}
\begin{frame}[plain,c]
\centering%
\hil{Further reading}
\medskip
\framebox{\href{https://pizzaseminar.speicherleck.de/skript2/zariski-topos-klein.pdf}{\includegraphics[height=0.8\textheight]{fun-with-the-zariski-topos}}}\qquad%
\framebox{\href{https://rawgit.com/iblech/internal-methods/master/notes.pdf}{\includegraphics[height=0.8\textheight]{phd-cover}}}
\par
\end{frame}
\begin{frame}{Applications in algebraic geometry}
\vspace*{-1.5em}
\begin{varblock}{0.9\textwidth}{}
\justifying
Understand notions of algebraic geometry over a scheme~$X$ as
notions of algebra internal to~$\Sh(X)$.
\end{varblock}
\small\centering
\scalebox{0.83}{\begin{tabular}{ll}
\toprule
externally & internally to $\Sh(X)$ \\
\midrule
sheaf of sets & set \\
%sheaf of rings & ring \\
sheaf of modules & module \\
sheaf of finite type & finitely generated module \\
% finite locally free sheaf & finite free module \\
% coherent sheaf & coherent module \\
tensor product of sheaves & tensor product of modules \\
% sheaf of Kähler differentials & module of Kähler differentials \\
sheaf of rational functions & total quotient ring of~$\O_X$ \\
dimension of $X$ & Krull dimension of~$\O_X$ \\
spectrum of a sheaf of~$\O_X$-algebras & ordinary spectrum [with a twist] \\
higher direct images & sheaf cohomology \\
\bottomrule
\end{tabular}}
\begin{columns}[c]
\begin{column}{0.47\textwidth}
\begin{exampleblock}{}
\justifying
Let $0 \to \F' \to \F \to \F'' \to 0$ be a short exact sequence
of sheaves of~$\O_X$-modules. If~$\F'$ and~$\F''$ are of finite type,
so is~$\F$.
\end{exampleblock}
\end{column}
\begin{column}{0.1\textwidth}
\vspace*{0.7em}
\scalebox{3}{$\Leftarrow$}
\end{column}
\begin{column}{0.44\textwidth}
\begin{exampleblock}{}
\justifying
Let~$0 \to M' \to M \to M'' \to 0$ be a short exact sequence of
modules. If~$M'$ and~$M''$ are finitely generated, so is~$M$.
\end{exampleblock}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Synthetic algebraic geometry}
Usual approach to algebraic geometry: \hil{layer schemes above ordinary set theory}
using either
\begin{itemize}
\item locally ringed spaces
\small
\begin{multline*}
\text{set of prime ideals of~$\ZZ[X,Y,Z]/(X^n+Y^n-Z^n)$} + {} \\
\text{Zariski topology} + \text{structure sheaf}
\end{multline*}
\normalsize
\item or Grothendieck's functor-of-points account, where a scheme is a functor~$\mathrm{Ring} \to \mathrm{Set}$.
\small\[ A \longmapsto \{ (x,y,z) \in A^3 \,|\, x^n+y^n-z^n=0 \} \]
\end{itemize}
\bigskip
\hil{Synthetic approach:} model schemes \hil{directly as sets} in a certain
nonclassical set theory, the internal universe of the \mbox{\hil{big Zariski
topos}} of a base scheme.
\small
\[ \{ (x,y,z) \? (\affl)^3 \,|\, x^n+y^n-z^n=0 \} \]
\end{frame}
\backupend
\end{document}