-
Notifications
You must be signed in to change notification settings - Fork 3
/
slides-padova2020.tex
525 lines (447 loc) · 16.6 KB
/
slides-padova2020.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
\documentclass[12pt,utf8,notheorems,compress,t]{beamer}
\usepackage{etex}
\usepackage{pgfpages}
%\setbeameroption{show notes on second screen}
%\setbeamertemplate{note page}[plain]
%\newcommand{\jnote}[2]{\only<#1>{\note{\setlength\parskip{\medskipamount}\justifying\footnotesize#2\par}}}
\newcommand{\jnote}[2]{}
% Workaround for the issue described at
% https://tex.stackexchange.com/questions/164406/beamer-using-href-in-notes.
\newcommand{\fixedhref}[2]{\makebox[0pt][l]{\hspace*{\paperwidth}\href{#1}{#2}}\href{#1}{#2}}
\usepackage[english]{babel}
\usepackage{graphbox}
\usepackage{mathtools}
\usepackage{booktabs}
\usepackage{stmaryrd}
\usepackage{amssymb}
\usepackage{array}
\usepackage{ragged2e}
\usepackage{multicol}
\usepackage{tabto}
\usepackage{xstring}
\usepackage{ifthen}
\usepackage[normalem]{ulem}
\usepackage[all]{xy}
\xyoption{rotate}
\usepackage{tikz}
\usetikzlibrary{calc,shapes,shapes.callouts,shapes.arrows,patterns,fit,backgrounds,decorations.pathmorphing,positioning}
\hypersetup{colorlinks=true}
\newcommand*\circled[1]{\tikz[baseline=(char.base)]{%
\node[shape=circle,draw,inner sep=1pt] (char) {#1};}}
\DeclareFontFamily{U}{bbm}{}
\DeclareFontShape{U}{bbm}{m}{n}
{ <5> <6> <7> <8> <9> <10> <12> gen * bbm
<10.95> bbm10%
<14.4> bbm12%
<17.28><20.74><24.88> bbm17}{}
\DeclareFontShape{U}{bbm}{m}{sl}
{ <5> <6> <7> bbmsl8%
<8> <9> <10> <12> gen * bbmsl
<10.95> bbmsl10%
<14.4> <17.28> <20.74> <24.88> bbmsl12}{}
\DeclareFontShape{U}{bbm}{bx}{n}
{ <5> <6> <7> <8> <9> <10> <12> gen * bbmbx
<10.95> bbmbx10%
<14.4> <17.28> <20.74> <24.88> bbmbx12}{}
\DeclareFontShape{U}{bbm}{bx}{sl}
{ <5> <6> <7> <8> <9> <10> <10.95> <12> <14.4> <17.28>%
<20.74> <24.88> bbmbxsl10}{}
\DeclareFontShape{U}{bbm}{b}{n}
{ <5> <6> <7> <8> <9> <10> <10.95> <12> <14.4> <17.28>%
<20.74> <24.88> bbmb10}{}
\DeclareMathAlphabet{\mathbbm}{U}{bbm}{m}{n}
\SetMathAlphabet\mathbbm{bold}{U}{bbm}{bx}{n}
\usepackage{pifont}
\newcommand{\cmark}{\ding{51}}
\newcommand{\xmark}{\ding{55}}
\DeclareSymbolFont{extraup}{U}{zavm}{m}{n}
\DeclareMathSymbol{\varheart}{\mathalpha}{extraup}{86}
\graphicspath{{images/}}
\usepackage[protrusion=true,expansion=true]{microtype}
\setlength\parskip{\medskipamount}
\setlength\parindent{0pt}
\title{On the mystery of generic models}
\author{Ingo Blechschmidt}
\date{June 25th, 2020}
\useinnertheme[shadow=true]{rounded}
\setbeamerfont{block title}{size={}}
\useinnertheme{rectangles}
\usecolortheme{orchid}
\usecolortheme{seahorse}
\definecolor{mypurple}{RGB}{150,0,255}
\setbeamercolor{structure}{fg=mypurple}
\definecolor{myred}{RGB}{150,0,0}
\setbeamercolor*{title}{bg=myred,fg=white}
\setbeamercolor*{titlelike}{bg=myred,fg=white}
\setbeamercolor{frame}{bg=black}
\usefonttheme{serif}
\usepackage[T1]{fontenc}
\usepackage{libertine}
% lifted from https://arxiv.org/abs/1506.08870
\DeclareFontFamily{U}{min}{}
\DeclareFontShape{U}{min}{m}{n}{<-> udmj30}{}
\newcommand\yon{\!\text{\usefont{U}{min}{m}{n}\symbol{'210}}\!}
\newcommand{\A}{\mathcal{A}}
\newcommand{\B}{\mathcal{B}}
\renewcommand{\C}{\mathcal{C}}
\newcommand{\M}{\mathcal{M}}
\renewcommand{\AA}{\mathbb{A}}
\newcommand{\BB}{\mathbb{B}}
\newcommand{\pp}{\mathbbm{p}}
\newcommand{\MM}{\mathbb{M}}
\newcommand{\E}{\mathcal{E}}
\newcommand{\F}{\mathcal{F}}
\newcommand{\FF}{\mathbb{F}}
\renewcommand{\G}{\mathcal{G}}
\newcommand{\J}{\mathcal{J}}
\newcommand{\GG}{\mathbb{G}}
\renewcommand{\O}{\mathcal{O}}
\newcommand{\K}{\mathcal{K}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\TT}{\mathbb{T}}
\newcommand{\PP}{\mathbb{P}}
\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\CC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\newcommand{\aaa}{\mathfrak{a}}
\newcommand{\ppp}{\mathfrak{p}}
\newcommand{\fff}{\mathfrak{f}}
\newcommand{\defeq}{\vcentcolon=}
\newcommand{\defeqv}{\vcentcolon\equiv}
\newcommand{\Sh}{\mathrm{Sh}}
\newcommand{\GL}{\mathrm{GL}}
\newcommand{\Zar}{\mathrm{Zar}}
\newcommand{\op}{\mathrm{op}}
\newcommand{\Set}{\mathrm{Set}}
\newcommand{\Eff}{\mathrm{Ef{}f}}
\newcommand{\Sch}{\mathrm{Sch}}
\newcommand{\Aff}{\mathrm{Aff}}
\newcommand{\Ring}{\mathrm{Ring}}
\newcommand{\LocRing}{\mathrm{LocRing}}
\newcommand{\LRS}{\mathrm{LRS}}
\newcommand{\Hom}{\mathrm{Hom}}
\newcommand{\Spec}{\mathrm{Spec}}
\newcommand{\lra}{\longrightarrow}
\newcommand{\RelSpec}{\operatorname{Spec}}
\renewcommand{\_}{\mathpunct{.}}
\newcommand{\?}{\,{:}\,}
\newcommand{\speak}[1]{\ulcorner\text{\textnormal{#1}}\urcorner}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\affl}{\ensuremath{{\ul{\ensuremath{\AA}}^1}}}
\newcommand{\Ll}{\text{iff}}
\newcommand{\inv}{inv.\@}
\newcommand{\seq}[1]{\mathrel{\vdash\!\!\!_{#1}}}
\newcommand{\hg}{\mathbin{:}} % homogeneous coordinates
\setbeamertemplate{blocks}[rounded][shadow=false]
\newenvironment{indentblock}{%
\list{}{\leftmargin\leftmargin}%
\item\relax
}{%
\endlist
}
% Adapted from https://latex.org/forum/viewtopic.php?t=2251 (Stefan Kottwitz)
\newenvironment<>{hilblock}{
\begin{center}
\begin{minipage}{9.05cm}
\setlength{\textwidth}{9.05cm}
\begin{actionenv}#1
\def\insertblocktitle{}
\par
\usebeamertemplate{block begin}}{
\par
\usebeamertemplate{block end}
\end{actionenv}
\end{minipage}
\end{center}}
\newenvironment{changemargin}[2]{%
\begin{list}{}{%
\setlength{\topsep}{0pt}%
\setlength{\leftmargin}{#1}%
\setlength{\rightmargin}{#2}%
\setlength{\listparindent}{\parindent}%
\setlength{\itemindent}{\parindent}%
\setlength{\parsep}{\parskip}%
}%
\item[]}{\end{list}}
\tikzset{
invisible/.style={opacity=0,text opacity=0},
visible on/.style={alt={#1{}{invisible}}},
alt/.code args={<#1>#2#3}{%
\alt<#1>{\pgfkeysalso{#2}}{\pgfkeysalso{#3}}}
}
\newcommand{\pointthis}[3]{%
\tikz[remember picture,baseline]{
\node[anchor=base,inner sep=0,outer sep=0] (#2) {#2};
\node[visible on=#1,overlay,rectangle callout,rounded corners,callout relative pointer={(0.3cm,0.5cm)},fill=blue!20] at ($(#2.north)+(-0.1cm,-1.1cm)$) {#3};
}%
}
\tikzset{
invisible/.style={opacity=0,text opacity=0},
visible on/.style={alt={#1{}{invisible}}},
alt/.code args={<#1>#2#3}{%
\alt<#1>{\pgfkeysalso{#2}}{\pgfkeysalso{#3}}}
}
\newcommand{\hcancel}[5]{%
\tikz[baseline=(tocancel.base)]{
\node[inner sep=0pt,outer sep=0pt] (tocancel) {#1};
\draw[red!80, line width=0.4mm] ($(tocancel.south west)+(#2,#3)$) -- ($(tocancel.north east)+(#4,#5)$);
}%
}
\newcommand{\explain}[7]{%
\tikz[remember picture,baseline]{
\node[anchor=base,inner sep=2pt,outer sep=0,fill=#3,rounded corners] (label) {#1};
\node[anchor=north,visible on=<#2>,overlay,rectangle callout,rounded corners,callout
relative pointer={(0.0cm,0.5cm)+(0.0cm,#6)},fill=#3] at ($(label.south)+(0,-0.3cm)+(#4,#5)$) {#7};
}%
}
\newcommand{\explainstub}[2]{%
\tikz[remember picture,baseline]{
\node[anchor=base,inner sep=2pt,outer sep=0,fill=#2,rounded corners] (label) {#1};
}%
}
\newcommand{\squiggly}[1]{%
\tikz[remember picture,baseline]{
\node[anchor=base,inner sep=0,outer sep=0] (label) {#1};
\draw[thick,color=red!80,decoration={snake,amplitude=0.5pt,segment
length=3pt},decorate] ($(label.south west) + (0,-2pt)$) -- ($(label.south east) + (0,-2pt)$);
}%
}
% Adapted from https://latex.org/forum/viewtopic.php?t=2251 (Stefan Kottwitz)
\newenvironment<>{varblock}[2]{\begin{varblockextra}{#1}{#2}{}}{\end{varblockextra}}
\newenvironment<>{varblockextra}[3]{
\begin{center}
\begin{minipage}{#1}
\begin{actionenv}#4
{\centering \hil{#2}\par}
\def\insertblocktitle{}%\centering #2}
\def\varblockextraend{#3}
\usebeamertemplate{block begin}}{
\par
\usebeamertemplate{block end}
\varblockextraend
\end{actionenv}
\end{minipage}
\end{center}}
\setbeamertemplate{headline}{}
\setbeamertemplate{frametitle}{%
\vskip0.5em%
\leavevmode%
\begin{beamercolorbox}[dp=1ex,center]{}%
% \usebeamercolor[fg]{item}{\textbf{{\Large \insertframetitle}}}
\begin{tikzpicture}
\def\R{8pt}
\node (title) {\hil{\large\insertframetitle}};
\begin{pgfonlayer}{background}
\draw[decorate, very thick, draw=mypurple]
($(title.south west) + (\R, 0)$) arc(270:180:\R) --
($(title.north west) + (0, -\R)$) arc(180:90:\R) --
($(title.north east) + (-\R, 0)$) arc(90:0:\R) --
($(title.south east) + (0, \R)$) arc(0:-90:\R) --
cycle;
\end{pgfonlayer}
\end{tikzpicture}
\end{beamercolorbox}%
\vskip-0.6em%
}
\setbeamertemplate{navigation symbols}{}
\newcounter{framenumberpreappendix}
\newcommand{\backupstart}{
\setcounter{framenumberpreappendix}{\value{framenumber}}
}
\newcommand{\backupend}{
\addtocounter{framenumberpreappendix}{-\value{framenumber}}
\addtocounter{framenumber}{\value{framenumberpreappendix}}
}
\newcommand{\insertframeextra}{}
\setbeamertemplate{footline}{%
\begin{beamercolorbox}[wd=\paperwidth,ht=2.25ex,dp=1ex,right,rightskip=1mm,leftskip=1mm]{}%
% \inserttitle
\hfill
\insertframenumber\insertframeextra\,/\,\inserttotalframenumber
\end{beamercolorbox}%
\vskip0pt%
}
\newcommand{\hil}[1]{{\usebeamercolor[fg]{item}{\textbf{#1}}}}
\newcommand{\bad}[1]{\textcolor{red!90}{\textnormal{#1}}}
\newcommand{\bignumber}[1]{%
\renewcommand{\insertenumlabel}{#1}\scalebox{1.2}{\!\usebeamertemplate{enumerate item}\!}
}
\newcommand{\bigheart}{\includegraphics{heart}}
\begin{document}
\addtocounter{framenumber}{-1}
%\setbeamertemplate{headline}{\mynav{gray}{gray}{gray}}
{\usebackgroundtemplate{\begin{minipage}{\paperwidth}\vspace*{4.95cm}\includegraphics[width=\paperwidth]{topos-horses}\end{minipage}}
\begin{frame}[c]
\centering
\bigskip
\includegraphics[height=0.32\textwidth]{olivia-lattices}
\bigskip
\begin{tikzpicture}
\def\R{8pt}
\node (title) {\hil{On the mystery of generic models}};
\begin{pgfonlayer}{background}
\draw[decorate, very thick, draw=mypurple]
($(title.south west) + (\R, 0)$) arc(270:180:\R) --
($(title.north west) + (0, -\R)$) arc(180:90:\R) --
($(title.north east) + (-\R, 0)$) arc(90:0:\R) --
($(title.south east) + (0, \R)$) arc(0:-90:\R) --
cycle;
\end{pgfonlayer}
\end{tikzpicture}
\scriptsize
\textit{-- an invitation --}
\bigskip
Seminar at the \\
Dipartimento di Matematica (Tullio Levi-Civita) \\
Università degli Studi di Padova \\\ \\
June 25th, 2020
\bigskip
Ingo Blechschmidt
\par
\end{frame}}
\section{The generic model}
\subsection{The generic ring}
\begin{frame}{The generic ring}
\visible<2->{``}Let~$R$ be a ring.\visible<2->{''} \visible<2->{-- Which ring does this phrase refer to?}
\vspace*{-0.6em}
\begin{center}
\begin{tikzpicture}[ultra thick, node distance=7mm]
\node[rectangle, rounded corners=1pt, inner sep=5pt, draw=lime!80, fill=lime!40] (a) {$\ZZ$};
\node[rectangle, rounded corners=1pt, draw=lime!80, fill=lime!40, right=of a] (b) {$\FF_2$};
\node[rectangle, rounded corners=1pt, draw=lime!80, fill=lime!40, right=of b] (c) {$\QQ[X]$};
\node[regular polygon, regular polygon sides=6, draw=orange!80, fill=orange!40, right=of c, rounded corners=1pt] (d) {$\RR$};
\node[regular polygon, regular polygon sides=5, draw=pink!80, fill=pink!40, right=of d, rounded corners=1pt, inner sep=0cm] (e) {$\O_X$};
\visible<3->{\node[star, rounded corners=1pt, star points=10, inner
sep=2pt, draw=purple!80, fill=purple!30, right=of e] {$\AA$};}
\end{tikzpicture}
\end{center}
\vspace*{-0.6em}
\pause
\pause
\pause
\justifying
\textbf{Thm.} For any$^\star$ property~$P$ of rings, the following are
equivalent: \\[0em]
\begin{enumerate}
\item The \hil{generic ring}~$\AA$ has property~$P$.
\item Every$^\star$ ring has property~$P$.
\item The ring axioms entail property~$P$.
\end{enumerate}
\pause
\textbf{Example A.} For any~$x,y,z \in \AA$, $x + (y + z) = (x + y) + z$.
\pause
\textbf{Example B.} \only<6>{Is~$1 + 1 = 0$ in~$\AA$?}%
\pause
\only<7->{It is \hil{not the case} that~$1 + 1 = 0$ in~$\AA$. \only<8->{But also:}} \\
\pause
\phantom{\textbf{Example B.}} It is \hil{not the case} that~$1 + 1 \neq 0$ in~$\AA$.
\pause
\textbf{Example C (Anders Kock).} The generic ring is a \hil{field}:
\[ \forall x \in \AA\_ \bigl((x = 0 \Rightarrow 1 = 0) \Rightarrow (\exists y
\in \AA\_ xy = 1)\bigr). \]
\pause
\vspace*{-0.6em}
\hil{Hence:} When verifying a coherent sequent for all rings, can without loss of
generality assume the field condition.
\end{frame}
\begin{frame}{A selection of noncoherent sequents}
The \hil{generic object}~$\MM$ validates:
\begin{enumerate}
\item $\forall x,y \in \MM\_ \neg\neg(x = y)$.
\item $\forall x_1,\ldots,x_n \in \MM\_ \neg \forall y \in \MM\_
y = x_1 \vee \cdots \vee y = x_n$.
\end{enumerate}
The \hil{generic ring}~$\AA$ validates:
\begin{enumerate}
\item $\forall x \in \AA\_ (x = 0 \Rightarrow 1 = 0) \Rightarrow (\exists y \in \AA\_ xy = 1)$.
\item $\forall x \in \AA\_ \neg\neg(x = 0)$.
\end{enumerate}
The \hil{generic local ring}~$\AA'$ validates:
\begin{enumerate}
\item $\forall x \in \AA'\_ (x = 0 \Rightarrow 1 = 0) \Rightarrow (\exists y \in \AA'\_ xy = 1)$.
\item $\neg \forall x \in \AA'\_ \neg\neg(x = 0)$.
\item $\forall f \in \AA'[X]_{\text{degree} > 0}\_ \neg\neg \exists x \in \AA'\_ f(x) = 0$.
\end{enumerate}
\end{frame}
\begin{frame}{An application in commutative algebra}
\justifying
Let~$A$ be a reduced ring ($x^n = 0 \Rightarrow x = 0$).
Let~$\pp$ be the \hil{generic prime ideal$^\star$} of~$A$.
Then~$A_\pp \defeq A[\pp^{-1}]$ validates:
{\vspace*{-1.2em}
\setbeamercolor{block body}{bg=red!30}
\setbeamercolor{structure}{fg=purple}
\begin{varblock}{\textwidth}{}
$A_\pp$ is a \hil{field}: $\forall x \in A_\pp\_ (\neg(\exists y \in A_\pp\_
xy = 1) \Rightarrow x = 0)$.
$A_\pp$ has \hil{$\boldsymbol{\neg\neg}$-stable equality}:
$\forall x,y \in A_\pp\_ \neg\neg(x = y) \Rightarrow x = y$.
\mbox{$A_\pp$ is \hil{anonymously Noetherian}.}\\[-1.2em]
\end{varblock}}
This observation unlocks a short and conceptual proof of Grothen\-dieck's
\hil{generic freeness lemma} in algebraic geometry.
\mbox{\textbf{Thm.} (baby freeness) Let~$M$ be an~$A$-module. Then~\bignumber{1}
implies~\bignumber{3}.}
{\small
\begin{tabular}{@{}lc@{\ }l@{}}
\bignumber{1} $M$ is finitely generated &($\Longleftrightarrow$&
$M_\pp$ is finitely generated) \\
\bignumber{2} $M$ is locally free &($\Longleftrightarrow$&
$M_\pp$ is free) \\
\bignumber{3} $M$ is locally free \emph{on a dense open} &($\Longleftrightarrow$&
$M_\pp$ is \emph{not not} free) \\
\end{tabular}\par}
\textbf{Proof.} Elementary linear algebra over~$A_\pp$. \qed
\end{frame}
\begin{frame}{A systematic source}
\begin{center}
\includegraphics[width=0.8\textwidth]{wraith-some-recent-developments-in-topos-theory} \\
\scriptsize
Gavin Wraith. \emph{Some recent developments in topos theory.} \\ In:
Proc.\@ of the ICM (Helsinki, 1978).
\end{center}
\textbf{Thm. (Nullstellensatz):} The generic~$\TT$-model~$U_T$ validates:
For any coherent sequent~$\sigma$,
\[
\text{$\sigma$ holds for $U_\TT$} \quad\textcolor{purple}{\Longleftrightarrow}\quad
\text{$\ul{\TT}/U_\TT$ proves $\sigma$.}
\]
\justifying
\textbf{Thm. (universality):} The generic~$\TT$-model validates a first-order
formula~$P$ if and only if~$P$ is intuitionistically deducible from the
axioms of~$\TT$ and the Nullstellensatz.
\end{frame}
\begin{frame}{Arithmetic universes}
Places where we can do mathematics (among others):
\begin{multicols}{2}
\begin{enumerate}
\item $\Set$ (sets)
\item $\Eff$ (data types) \columnbreak
\item \mbox{$\mathrm{sSet}$ (simplicial sets)}
\item \mbox{$\Sh(X)$ (sheaves over~$X$)}
\end{enumerate}
\end{multicols}
\pause
\vspace*{-0.6em}
These are examples for \hil{arithmetic universes}.
\pause
\justifying
\textbf{Definition.} An \emph{arithmetic universe} is a category with finite
limits (``$\times$''), stable finite disjoint coproducts (``$\amalg$''),
stable ef{}fective quotients (``$X/{\sim}$'') and parametrized list objects
(``$\NN$'', ``$\mathrm{List}(X)$'').
\textbf{Thm.} Any statement which is provable in \hil{predicative constructive
mathematics} (no powersets, no $\varphi \vee \neg\varphi$, no
\mbox{$\neg\neg\varphi \Rightarrow \varphi$}, no axiom of choice) is true in any
arithmetic universe.
\pause
Further examples:
\begin{enumerate}
\addtocounter{enumi}{4}
\item the \hil{initial} arithmetic universe
\item the \hil{classifying} arithmetic universe for the theory of rings
\end{enumerate}
\end{frame}
\end{document}