forked from jax-ml/jax
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathonnx2xla.py
134 lines (110 loc) · 4.67 KB
/
onnx2xla.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# Copyright 2018 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""An ONNX to XLA compiler by JAX-tracing a Numpy-backed ONNX interpreter."""
from io import BytesIO
import hashlib
import urllib.request
import sys
import numpy as np
import onnx
from onnx import numpy_helper
import jax.numpy as jnp
from jax import jit, grad
from jax import lax
def _asarray(proto):
return numpy_helper.to_array(proto).reshape(tuple(proto.dims))
attr_types = dict(onnx.AttributeProto.AttributeType.items())
attribute_handlers = {
attr_types['FLOAT']: lambda a: a.f,
attr_types['INT']: lambda a: a.i,
attr_types['STRING']: lambda a: a.s,
attr_types['TENSOR']: lambda a: _asarray(a.t),
attr_types['FLOATS']: lambda a: a.floats,
attr_types['INTS']: lambda a: a.ints,
attr_types['STRINGS']: lambda a: a.strings,
attr_types['TENSORS']: lambda a: [_asarray(x) for x in a.tensors],
}
def onnx_maxpool(x, kernel_shape, pads=None, strides=None):
"""Numpy-backed implementation of ONNX MaxPool op."""
prefix = (1,) * (x.ndim - len(kernel_shape))
dims = prefix + tuple(kernel_shape)
pads = tuple(pads) if pads else [0] * len(kernel_shape)
strides = (prefix + tuple(strides)) if strides else [1] * len(kernel_shape)
return [lax.reduce_window(x, -jnp.inf, lax.max, dims, strides, 'VALID')]
def onnx_conv(x, w, b=0, group=1, kernel_shape=None, pads=None, strides=None,
dilations=None, auto_pad=None):
"""Numpy-backed implementation of ONNX Conv op."""
assert group == 1
kernel_shape = kernel_shape or w.shape
strides = strides or [1] * (w.ndim - 2)
if auto_pad:
auto_pad = 'SAME' if auto_pad.startswith(b'SAME') else 'VALID'
pads = lax.padtype_to_pads(x.shape[2:], w.shape[2:], strides, auto_pad)
else:
pads = pads or [0] * (w.ndim - 2)
lhs_dilation = [1] * (w.ndim - 2)
rhs_dilation = dilations or [1] * (w.ndim - 2)
return [lax.conv_with_general_padding(x, w, strides, pads,
lhs_dilation, rhs_dilation) + b]
def onnx_add(a, b, axis=None, broadcast=True):
"""Numpy-backed implementation of ONNX Add op."""
if broadcast:
axis = (a.dim - b.ndim) if axis is None else axis % a.ndim
assert a.shape[axis:][:b.ndim] == b.shape
b_shape = np.ones(a.ndim, dtype='int64')
b_shape[axis:axis + b.ndim] = b.shape
b = jnp.reshape(b, b_shape)
return [a + b]
onnx_ops = {
'Add': onnx_add,
'Constant': lambda value: [value],
'Conv': onnx_conv,
'MatMul': lambda x, y: [jnp.matmul(x, y)],
'MaxPool': onnx_maxpool,
'Relu': lambda x: [jnp.maximum(x, 0)],
'Reshape': lambda x, shape: [jnp.reshape(x, shape)],
}
def interpret_onnx(graph, *args):
vals = dict({n.name: a for n, a in zip(graph.input, args)},
**{n.name: _asarray(n) for n in graph.initializer})
for node in graph.node:
args = (vals[name] for name in node.input)
attrs = {a.name: attribute_handlers[a.type](a) for a in node.attribute}
outputs = onnx_ops[node.op_type](*args, **attrs)
for name, output in zip(node.output, outputs):
vals[name] = output
return [vals[n.name] for n in graph.output]
if __name__ == "__main__":
# It seems that there are several ONNX proto versions (you had one job!) but
# this implementation works with at least this one mnist example file.
url = ('https://github.com/onnx/models/blob/'
'81c4779096d1205edd0b809e191a924c58c38fef/'
'mnist/model.onnx?raw=true')
download = urllib.request.urlopen(url).read()
if hashlib.md5(download).hexdigest() != 'bc8ad9bd19c5a058055dc18d0f089dad':
print("onnx file checksum mismatch")
sys.exit(1)
model = onnx.load(BytesIO(download))
predict = lambda inputs: interpret_onnx(model.graph, inputs)[0]
# Run inference in Numpy-backed interpreter
print("interpreted:")
print(predict(jnp.ones((1, 1, 28, 28))))
# JIT compile to XLA device, run inference on device
compiled_predict = jit(predict)
print("compiled:")
print(compiled_predict(jnp.ones((1, 1, 28, 28))))
# The interpreter is differentiable too! Even the compiled one:
fun = lambda inputs: jnp.sum(compiled_predict(inputs))
print("a derivative with respect to inputs:")
print(grad(fun)(jnp.ones((1, 1, 28, 28)))[..., :3, :3])