diff --git a/icpp_llama2/README_icpp_llama2_resource_requirements.md b/icpp_llama2/README_icpp_llama2_resource_requirements.md
new file mode 100644
index 0000000..b0e6880
--- /dev/null
+++ b/icpp_llama2/README_icpp_llama2_resource_requirements.md
@@ -0,0 +1,71 @@
+# Canister resource requirements for icpp_llama2.
+
+Do not edit this file. It is created with the command:
+```bash
+python -m scripts.icpp_llama2_sizer
+```
+
+### Tokenizer Memory (per model)
+
+Memory Type | 260K
(MB) | 15M
(MB) | 42M
(MB) | 110M
(MB)
+--- | --- | --- | --- | ---
+vocab_memory | 0.00 | 0.12 | 0.12 | 0.12
+vocab_scores_memory | 0.00 | 0.12 | 0.12 | 0.12
+Total | 0.00 | 0.24 | 0.24 | 0.24
+
+
+### TransformerWeights Memory (per model)
+
+Memory Type | 260K
(MB) | 15M
(MB) | 42M
(MB) | 110M
(MB)
+--- | --- | --- | --- | ---
+token_embedding_table | 0.12 | 35.16 | 62.50 | 93.75
+rms_att_weight | 0.00 | 0.01 | 0.02 | 0.04
+wq | 0.08 | 1.90 | 8.00 | 27.00
+wk | 0.04 | 1.90 | 8.00 | 27.00
+wv | 0.04 | 1.90 | 8.00 | 27.00
+wo | 0.08 | 1.90 | 8.00 | 27.00
+rms_ffn_weight | 0.00 | 0.01 | 0.02 | 0.04
+w1 | 0.21 | 5.06 | 21.50 | 72.00
+w2 | 0.21 | 5.06 | 21.50 | 72.00
+w3 | 0.21 | 5.06 | 21.50 | 72.00
+rms_final_weight | 0.00 | 0.00 | 0.00 | 0.00
+wcls | 0.12 | 35.16 | 62.50 | 93.75
+Total | 1.12 | 93.11 | 221.53 | 511.57
+
+
+### RunState Memory (per user)
+
+Memory Type | 260K
(MB) | 15M
(MB) | 42M
(MB) | 110M
(MB)
+--- | --- | --- | --- | ---
+x | 0.00 | 0.00 | 0.00 | 0.00
+xb | 0.00 | 0.00 | 0.00 | 0.00
+xb2 | 0.00 | 0.00 | 0.00 | 0.00
+hb | 0.00 | 0.00 | 0.01 | 0.01
+hb2 | 0.00 | 0.00 | 0.01 | 0.01
+q | 0.00 | 0.00 | 0.00 | 0.00
+k | 0.00 | 0.00 | 0.00 | 0.00
+v | 0.00 | 0.00 | 0.00 | 0.00
+att | 0.02 | 0.01 | 0.03 | 0.05
+logits | 0.00 | 0.12 | 0.12 | 0.12
+key_cache | 0.31 | 1.69 | 16.00 | 36.00
+value_cache | 0.31 | 1.69 | 16.00 | 36.00
+Total | 0.65 | 3.52 | 32.18 | 72.20
+
+
+### Total Memory
+
+Memory Type | 260K
(MB) | 15M
(MB) | 42M
(MB) | 110M
(MB)
+--- | --- | --- | --- | ---
+Total Tokenizer Memory (per model) | 0.00 | 0.24 | 0.24 | 0.24
+Total TransformerWeights Memory (per model) | 1.12 | 93.11 | 221.53 | 511.57
+Total RunState Memory (per user) | 0.65 | 3.52 | 32.18 | 72.20
+Overall Total Memory | 1.76 | 96.62 | 253.71 | 583.78
+
+
+### Canister Metrics
+
+Canister Metrics | 260K
(MB) | 15M
(MB) | 42M
(MB) | 110M
(MB)
+--- | --- | --- | --- | ---
+Max number of concurrent users | 4760 | 847 | 88 | 35
+
+
diff --git a/icpp_llama2/scripts/icpp_llama2_sizer.py b/icpp_llama2/scripts/icpp_llama2_sizer.py
new file mode 100644
index 0000000..4d82357
--- /dev/null
+++ b/icpp_llama2/scripts/icpp_llama2_sizer.py
@@ -0,0 +1,266 @@
+"""Calculates the require resources to deploy a Llama2 model to an IC canister"""
+# pylint: disable=invalid-name
+import sys
+import struct
+from pathlib import Path
+from typing import TextIO
+
+ROOT_PATH = Path(__file__).parent.parent
+
+# For 32 bit system
+SIZE_OF_FLOAT = 4 # bytes
+SIZE_OF_POINTER = 4 # bytes
+SIZE_OF_BYTE_PIECES = 512 # bytes (static size)
+
+
+def read_config_from_file(file_path: Path) -> dict[str, int]:
+ """
+ Reads the Config structure from a binary file and returns it as a dictionary.
+ """
+ with open(file_path, "rb") as f:
+ # Read the data corresponding to the Config struct
+ data: bytes = f.read(struct.calcsize("7i"))
+ config_values = struct.unpack("7i", data)
+
+ config: dict[str, int] = {
+ "dim": config_values[0],
+ "hidden_dim": config_values[1],
+ "n_layers": config_values[2],
+ "n_heads": config_values[3],
+ "n_kv_heads": config_values[4],
+ "vocab_size": abs(
+ config_values[5]
+ ), # account for possible negative vocab_size
+ "seq_len": config_values[6],
+ }
+ return config
+
+
+def calculate_memory(config: dict[str, int]) -> dict[str, dict[str, float]]:
+ """Calculate required memory for all the LLM components"""
+ # Tokenizer
+ vocab_memory = config["vocab_size"] * SIZE_OF_POINTER
+ vocab_scores_memory = config["vocab_size"] * SIZE_OF_FLOAT
+
+ # TransformerWeights
+ head_size = config["dim"] / config["n_heads"]
+ n_layers = config["n_layers"]
+
+ token_embedding_table = config["vocab_size"] * config["dim"] * SIZE_OF_FLOAT
+ rms_att_weight = n_layers * config["dim"] * SIZE_OF_FLOAT
+ wq = n_layers * config["dim"] * (config["n_heads"] * head_size) * SIZE_OF_FLOAT
+ wk = n_layers * config["dim"] * (config["n_kv_heads"] * head_size) * SIZE_OF_FLOAT
+ wv = wk # Same as wk
+ wo = n_layers * (config["n_heads"] * head_size) * config["dim"] * SIZE_OF_FLOAT
+ rms_ffn_weight = n_layers * config["dim"] * SIZE_OF_FLOAT
+ w1 = n_layers * config["dim"] * config["hidden_dim"] * SIZE_OF_FLOAT
+ w2 = n_layers * config["hidden_dim"] * config["dim"] * SIZE_OF_FLOAT
+ w3 = w1 # Same as w1
+ rms_final_weight = config["dim"] * SIZE_OF_FLOAT
+ wcls = config["vocab_size"] * config["dim"] * SIZE_OF_FLOAT
+
+ # RunState
+ kv_dim = (config["dim"] * config["n_kv_heads"]) / config["n_heads"]
+ x = config["dim"] * SIZE_OF_FLOAT
+ xb = x # Same as x
+ xb2 = x # Same as x
+ hb = config["hidden_dim"] * SIZE_OF_FLOAT
+ hb2 = hb # Same as hb
+ q = x # Same as x
+ k = kv_dim * SIZE_OF_FLOAT
+ v = k # Same as k
+ att = config["n_heads"] * config["seq_len"] * SIZE_OF_FLOAT
+ logits = config["vocab_size"] * SIZE_OF_FLOAT
+ key_cache = n_layers * config["seq_len"] * kv_dim * SIZE_OF_FLOAT
+ value_cache = key_cache # Same as key_cache
+
+ # Calculate total memory usage for Tokenizer, TransformerWeights and RunState
+ total_tokenizer = vocab_memory + vocab_scores_memory + SIZE_OF_BYTE_PIECES
+
+ total_transformer_weights = sum(
+ [
+ token_embedding_table,
+ rms_att_weight,
+ wq,
+ wk,
+ wv,
+ wo,
+ rms_ffn_weight,
+ w1,
+ w2,
+ w3,
+ rms_final_weight,
+ wcls,
+ ]
+ )
+ total_run_state = sum(
+ [x, xb, xb2, hb, hb2, q, k, v, att, logits, key_cache, value_cache]
+ )
+
+ # Collate the results in a dictionary
+ data: dict[str, dict[str, float]] = {
+ "Tokenizer Memory (per model)": {
+ "vocab_memory": vocab_memory / (1024 * 1024),
+ "vocab_scores_memory": vocab_scores_memory / (1024 * 1024),
+ },
+ "TransformerWeights Memory (per model)": {
+ "token_embedding_table": token_embedding_table / (1024 * 1024),
+ "rms_att_weight": rms_att_weight / (1024 * 1024),
+ "wq": wq / (1024 * 1024),
+ "wk": wk / (1024 * 1024),
+ "wv": wv / (1024 * 1024),
+ "wo": wo / (1024 * 1024),
+ "rms_ffn_weight": rms_ffn_weight / (1024 * 1024),
+ "w1": w1 / (1024 * 1024),
+ "w2": w2 / (1024 * 1024),
+ "w3": w3 / (1024 * 1024),
+ "rms_final_weight": rms_final_weight / (1024 * 1024),
+ "wcls": wcls / (1024 * 1024),
+ },
+ "RunState Memory (per user)": {
+ "x": x / (1024 * 1024),
+ "xb": xb / (1024 * 1024),
+ "xb2": xb2 / (1024 * 1024),
+ "hb": hb / (1024 * 1024),
+ "hb2": hb2 / (1024 * 1024),
+ "q": q / (1024 * 1024),
+ "k": k / (1024 * 1024),
+ "v": v / (1024 * 1024),
+ "att": att / (1024 * 1024),
+ "logits": logits / (1024 * 1024),
+ "key_cache": key_cache / (1024 * 1024),
+ "value_cache": value_cache / (1024 * 1024),
+ },
+ "Total Memory": {
+ "Total Tokenizer Memory (per model)": total_tokenizer / (1024 * 1024),
+ "Total TransformerWeights Memory (per model)": total_transformer_weights
+ / (1024 * 1024),
+ "Total RunState Memory (per user)": total_run_state / (1024 * 1024),
+ "Overall Total Memory": (total_transformer_weights + total_run_state)
+ / (1024 * 1024),
+ },
+ }
+ return data
+
+
+def write_data(file: TextIO, title: str, data: dict[str, dict[str, float]]) -> None:
+ """Writes it all to a Markdown file"""
+ # Get the models for headers
+ headers = ["Memory Type"] + [f"{model}
(MB)" for model in data.keys()]
+
+ # Write the table name
+ file.write(f"### {title}\n\n")
+
+ # Write the headers
+ file.write(" | ".join(headers) + "\n")
+ file.write(" | ".join(["---"] * len(headers)) + "\n")
+
+ # Assuming that all models have the same memory types,
+ # using the first model to get the list of memory types
+ memory_types = list(data[next(iter(data))].keys())
+
+ totals = {model: 0.0 for model in data.keys()}
+
+ for mtype in memory_types:
+ row_data = [mtype] + [
+ f"{model_data[mtype]:.2f}" for model_data in data.values()
+ ]
+ file.write(" | ".join(row_data) + "\n")
+
+ # Accumulate totals for the first three tables
+ if title in [
+ "Tokenizer Memory (per model)",
+ "TransformerWeights Memory (per model)",
+ "RunState Memory (per user)",
+ ]:
+ for model, value in zip(
+ data.keys(),
+ [model_data[mtype] for model_data in data.values()],
+ ):
+ totals[model] += value
+
+ if title in [
+ "Tokenizer Memory (per model)",
+ "TransformerWeights Memory (per model)",
+ "RunState Memory (per user)",
+ ]:
+ # Add the totals to the table
+ total_row = ["Total"] + [f"{totals[model]:.2f}" for model in data.keys()]
+ file.write(" | ".join(total_row) + "\n")
+ else:
+ # Calculate max users for each model
+ # Calculate number of users for each model and add it to the data
+ number_of_users = {}
+ for model, values in data.items():
+ total_available_memory = 3 * 1024 # Available canister memory in MB
+ total_tokenizer_memory = values["Total Tokenizer Memory (per model)"]
+ total_transformer_weights_memory = values[
+ "Total TransformerWeights Memory (per model)"
+ ]
+ total_runstate_memory = values["Total RunState Memory (per user)"]
+
+ number_of_users[model] = int(
+ (
+ total_available_memory
+ - total_tokenizer_memory
+ - total_transformer_weights_memory
+ )
+ / total_runstate_memory
+ )
+
+ # Write the markdown table for number of users
+ file.write("\n\n")
+ # Get the models for headers
+ headers = ["Canister Metrics"] + [f"{model}
(MB)" for model in data.keys()]
+
+ # Write the table name
+ file.write("### Canister Metrics\n\n")
+
+ # Write the headers
+ file.write(" | ".join(headers) + "\n")
+ file.write(" | ".join(["---"] * len(headers)) + "\n")
+
+ row_data = ["Max number of concurrent users"] + [
+ f"{number_of_users[model]}" for model in data.keys()
+ ]
+ file.write(" | ".join(row_data) + "\n")
+
+ file.write("\n\n")
+
+
+def main() -> int:
+ """Reads the model.bin files and summarizes the resource requirements."""
+ file_paths: dict[str, Path] = {
+ "260K": ROOT_PATH / "stories260K/stories260K.bin",
+ "15M": ROOT_PATH / "models/stories15M.bin",
+ "42M": ROOT_PATH / "models/stories42M.bin",
+ "110M": ROOT_PATH / "models/stories110M.bin",
+ }
+
+ data = {}
+ for key, file_path in file_paths.items():
+ config: dict[str, int] = read_config_from_file(file_path)
+ data[key] = calculate_memory(config)
+
+ output_path = ROOT_PATH / "README_icpp_llama2_resource_requirements.md"
+ with open(output_path, "w") as file:
+ file.write("# Canister resource requirements for icpp_llama2.")
+ file.write("\n")
+ file.write("\nDo not edit this file. It is created with the command: ")
+ file.write("\n```bash")
+ file.write("\npython -m scripts.icpp_llama2_sizer")
+ file.write("\n```\n\n")
+ for key in [
+ "Tokenizer Memory (per model)",
+ "TransformerWeights Memory (per model)",
+ "RunState Memory (per user)",
+ "Total Memory",
+ ]:
+ subset_data = {k: v[key] for k, v in data.items()}
+ write_data(file, key, subset_data)
+
+ return 0
+
+
+if __name__ == "__main__":
+ sys.exit(main())