-
Notifications
You must be signed in to change notification settings - Fork 1
/
gini.R
406 lines (390 loc) · 17.8 KB
/
gini.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
#' Gini Index based on Gini (1921)
#'
#' Compute the aspatial racial or ethnic Gini Index and retrieve the aspatial income Gini Index
#'
#' @param geo_large Character string specifying the larger geographical unit of the data. The default is counties \code{geo_large = 'county'}.
#' @param geo_small Character string specifying the smaller geographical unit of the data. The default is census tracts \code{geo_small = 'tract'}.
#' @param year Numeric. The year to compute the estimate. The default is 2020, and the years 2009 onward are currently available.
#' @param subgroup Character string specifying the racial or ethnic subgroup(s). See Details for available choices.
#' @param omit_NAs Logical. If FALSE, will compute index for a larger geographical unit only if all of its smaller geographical units have values. The default is TRUE.
#' @param quiet Logical. If TRUE, will display messages about potential missing census information
#' @param ... Arguments passed to \code{\link[tidycensus]{get_acs}} to select state, county, and other arguments for census characteristics
#'
#' @details This function will retrieve the aspatial Gini Index (\emph{G}) of U.S. census tracts or counties for a specified geographical extent (e.g., the entire U.S. or a single state) based on Gini (1921) \doi{10.2307/2223319} for income inequality (at smaller geographical units) and race or ethnicity inequality (at larger geographical units).
#'
#' The function uses the \code{\link[tidycensus]{get_acs}} function to obtain U.S. Census Bureau 5-year American Community Survey estimates of \emph{G} for the geospatial computation. The yearly estimates are available for 2009 onward when ACS-5 data are available (2010 onward for \code{geo_large = 'cbsa'} and 2011 onward for \code{geo_large = 'place'}, \code{geo_large = 'csa'}, or \code{geo_large = 'metro'}) but are available from other U.S. Census Bureau surveys. The function will retrieve the provided income inequality metric (\strong{B19083}) and the twenty racial or ethnic subgroups (U.S. Census Bureau definitions) are:
#' \itemize{
#' \item \strong{B03002_002}: not Hispanic or Latino \code{'NHoL'}
#' \item \strong{B03002_003}: not Hispanic or Latino, white alone\code{'NHoLW'}
#' \item \strong{B03002_004}: not Hispanic or Latino, Black or African American alone \code{'NHoLB'}
#' \item \strong{B03002_005}: not Hispanic or Latino, American Indian and Alaska Native alone \code{'NHoLAIAN'}
#' \item \strong{B03002_006}: not Hispanic or Latino, Asian alone \code{'NHoLA'}
#' \item \strong{B03002_007}: not Hispanic or Latino, Native Hawaiian and Other Pacific Islander alone \code{'NHoLNHOPI'}
#' \item \strong{B03002_008}: not Hispanic or Latino, Some other race alone \code{'NHoLSOR'}
#' \item \strong{B03002_009}: not Hispanic or Latino, Two or more races \code{'NHoLTOMR'}
#' \item \strong{B03002_010}: not Hispanic or Latino, Two races including Some other race \code{'NHoLTRiSOR'}
#' \item \strong{B03002_011}: not Hispanic or Latino, Two races excluding Some other race, and three or more races \code{'NHoLTReSOR'}
#' \item \strong{B03002_012}: Hispanic or Latino \code{'HoL'}
#' \item \strong{B03002_013}: Hispanic or Latino, white alone \code{'HoLW'}
#' \item \strong{B03002_014}: Hispanic or Latino, Black or African American alone \code{'HoLB'}
#' \item \strong{B03002_015}: Hispanic or Latino, American Indian and Alaska Native alone \code{'HoLAIAN'}
#' \item \strong{B03002_016}: Hispanic or Latino, Asian alone \code{'HoLA'}
#' \item \strong{B03002_017}: Hispanic or Latino, Native Hawaiian and Other Pacific Islander alone \code{'HoLNHOPI'}
#' \item \strong{B03002_018}: Hispanic or Latino, Some other race alone \code{'HoLSOR'}
#' \item \strong{B03002_019}: Hispanic or Latino, Two or more races \code{'HoLTOMR'}
#' \item \strong{B03002_020}: Hispanic or Latino, Two races including Some other race \code{'HoLTRiSOR'}
#' \item \strong{B03002_021}: Hispanic or Latino, Two races excluding Some other race, and three or more races \code{'HoLTReSOR'}
#' }
#'
#' Use the internal \code{state} and \code{county} arguments within the \code{\link[tidycensus]{get_acs}} function to specify geographic extent of the data output.
#'
#' According to the U.S. Census Bureau \url{https://www.census.gov/topics/income-poverty/income-inequality/about/metrics/gini-index.html}: 'The Gini Index is a summary measure of income inequality. The Gini coefficient incorporates the detailed shares data into a single statistic, which summarizes the dispersion of income across the entire income distribution. The Gini coefficient ranges from 0, indicating perfect equality (where everyone receives an equal share), to 1, perfect inequality (where only one recipient or group of recipients receives all the income). The Gini Index is based on the difference between the Lorenz curve (the observed cumulative income distribution) and the notion of a perfectly equal income distribution.' For racial or ethnic inequality, *G* is a summary measure of racial or ethnic unevenness or the mean absolute difference between a selected subgroup proportions weighted across all pairs of geographic units, expressed as a proportion of the maximum weighted difference.
#'
#' Larger geographical units available include states \code{geo_large = 'state'}, counties \code{geo_large = 'county'}, census tracts \code{geo_large = 'tract'}, census-designated places \code{geo_large = 'place'}, core-based statistical areas \code{geo_large = 'cbsa'}, combined statistical areas \code{geo_large = 'csa'}, and metropolitan divisions \code{geo_large = 'metro'}. Smaller geographical units available include, counties \code{geo_small = 'county'}, census tracts \code{geo_small = 'tract'}, and census block groups \code{geo_small = 'cbg'}. If a larger geographical unit is comprised of only one smaller geographical unit (e.g., a U.S county contains only one census tract), then the \emph{V} value returned is NA. If the larger geographical unit is census-designated places \code{geo_large = 'place'}, core-based statistical areas \code{geo_large = 'cbsa'}, combined statistical areas \code{geo_large = 'csa'}, or metropolitan divisions \code{geo_large = 'metro'}, only the smaller geographical units completely within a larger geographical unit are considered in the \emph{V} computation (see internal \code{\link[sf]{st_within}} function for more information) and recommend specifying all states within which the interested larger geographical unit are located using the internal \code{state} argument to ensure all appropriate smaller geographical units are included in the \emph{V} computation.
#'
#' @return An object of class 'list'. This is a named list with the following components:
#'
#' \describe{
#' \item{\code{g}}{An object of class 'tbl' for the GEOID, name, and \emph{G_re} metrics of specified census geographies.}
#' \item{\code{g_data}}{An object of class 'tbl' for the raw census values at specified smaller census geographies including \emph{G_inc}.}
#' \item{\code{missing}}{An object of class 'tbl' of the count and proportion of missingness for \emph{G_inc} and each census variable used to compute \emph{G_re}.}
#' }
#'
#' @import dplyr
#' @importFrom sf st_drop_geometry st_within
#' @importFrom stats complete.cases
#' @importFrom stringr str_trim
#' @importFrom tidycensus get_acs
#' @importFrom tidyr pivot_longer separate
#' @importFrom tigris combined_statistical_areas core_based_statistical_areas metro_divisions places
#' @importFrom utils stack
#' @export
#'
#' @seealso \code{\link[tidycensus]{get_acs}} for additional arguments for geographic extent selection (i.e., \code{state} and \code{county}).
#'
#' @examples
#' \dontrun{
#' # Wrapped in \dontrun{} because these examples require a Census API key.
#'
#' # Gini Index (a metric of evenness)
#' ## of Black populations
#' ## in census tracts of Georgia, U.S.A. (2020)
#' gini(
#' geo_large = 'county',
#' geo_small = 'tract',
#' state = 'GA',
#' year = 2020,
#' subgroup = c('NHoLB', 'HoLB')
#' )
#'
#' }
#'
gini <- function(geo_large = 'county',
geo_small = 'tract',
year = 2020,
subgroup,
omit_NAs = TRUE,
quiet = FALSE,
...) {
# Check arguments
match.arg(geo_large, choices = c('state', 'county', 'tract', 'place', 'cbsa', 'csa', 'metro'))
match.arg(geo_small, choices = c('county', 'tract', 'cbg', 'block group'))
stopifnot(is.numeric(year), year >= 2009) # all variables available 2009 onward
match.arg(
subgroup,
several.ok = TRUE,
choices = c(
'NHoL',
'NHoLW',
'NHoLB',
'NHoLAIAN',
'NHoLA',
'NHoLNHOPI',
'NHoLSOR',
'NHoLTOMR',
'NHoLTRiSOR',
'NHoLTReSOR',
'HoL',
'HoLW',
'HoLB',
'HoLAIAN',
'HoLA',
'HoLNHOPI',
'HoLSOR',
'HoLTOMR',
'HoLTRiSOR',
'HoLTReSOR'
)
)
# Select census variable
vars <- c(
TotalPop = 'B03002_001',
NHoL = 'B03002_002',
NHoLW = 'B03002_003',
NHoLB = 'B03002_004',
NHoLAIAN = 'B03002_005',
NHoLA = 'B03002_006',
NHoLNHOPI = 'B03002_007',
NHoLSOR = 'B03002_008',
NHoLTOMR = 'B03002_009',
NHoLTRiSOR = 'B03002_010',
NHoLTReSOR = 'B03002_011',
HoL = 'B03002_012',
HoLW = 'B03002_013',
HoLB = 'B03002_014',
HoLAIAN = 'B03002_015',
HoLA = 'B03002_016',
HoLNHOPI = 'B03002_017',
HoLSOR = 'B03002_018',
HoLTOMR = 'B03002_019',
HoLTRiSOR = 'B03002_020',
HoLTReSOR = 'B03002_021',
G_inc = 'B19083_001'
)
selected_vars <- vars[c('G_inc', 'TotalPop', subgroup)]
out_names <- names(selected_vars) # save for output
in_subgroup <- paste0(subgroup, 'E')
# Acquire Gvariables and sf geometries
out_dat <- suppressMessages(suppressWarnings(
tidycensus::get_acs(
geography = geo_small,
year = year,
output = 'wide',
variables = selected_vars,
geometry = TRUE,
keep_geo_vars = TRUE,
...
)
))
# Format output
if (geo_small == 'county') {
out_dat <- out_dat %>%
tidyr::separate(NAME.y, into = c('county', 'state'), sep = ',')
}
if (geo_small == 'tract') {
out_dat <- out_dat %>%
tidyr::separate(NAME.y, into = c('tract', 'county', 'state'), sep = ',') %>%
dplyr::mutate(tract = gsub('[^0-9\\.]', '', tract))
}
if (geo_small == 'cbg' | geo_small == 'block group') {
out_dat <- out_dat %>%
tidyr::separate(NAME.y, into = c('cbg', 'tract', 'county', 'state'), sep = ',') %>%
dplyr::mutate(
tract = gsub('[^0-9\\.]', '', tract), cbg = gsub('[^0-9\\.]', '', cbg)
)
}
# Grouping IDs for R computation
if (geo_large == 'state') {
out_dat <- out_dat %>%
dplyr::mutate(oid = STATEFP, state = stringr::str_trim(state)) %>%
sf::st_drop_geometry()
}
if (geo_large == 'tract') {
out_dat <- out_dat %>%
dplyr::mutate(
oid = paste0(STATEFP, COUNTYFP, TRACTCE),
state = stringr::str_trim(state),
county = stringr::str_trim(county)
) %>%
sf::st_drop_geometry()
}
if (geo_large == 'county') {
out_dat <- out_dat %>%
dplyr::mutate(
oid = paste0(STATEFP, COUNTYFP),
state = stringr::str_trim(state),
county = stringr::str_trim(county)
) %>%
sf::st_drop_geometry()
}
if (geo_large == 'place') {
stopifnot(is.numeric(year), year >= 2011) # Places only available 2011 onward
lgeom <- suppressMessages(suppressWarnings(tigris::places(
year = year, state = unique(out_dat$state))
))
wlgeom <- sf::st_within(out_dat, lgeom)
out_dat <- out_dat %>%
dplyr::mutate(
oid = lapply(wlgeom, function(x) {
tmp <- lgeom[x, 4] %>% sf::st_drop_geometry()
lapply(tmp, function(x) { if (length(x) == 0) NA else x })
}) %>%
unlist(),
place = lapply(wlgeom, function(x) {
tmp <- lgeom[x, 5] %>% sf::st_drop_geometry()
lapply(tmp, function(x) { if (length(x) == 0) NA else x })
}) %>%
unlist()
) %>%
sf::st_drop_geometry()
}
if (geo_large == 'cbsa') {
stopifnot(is.numeric(year), year >= 2010) # CBSAs only available 2010 onward
lgeom <- suppressMessages(suppressWarnings(tigris::core_based_statistical_areas(year = year)))
wlgeom <- sf::st_within(out_dat, lgeom)
out_dat <- out_dat %>%
dplyr::mutate(
oid = lapply(wlgeom, function(x) {
tmp <- lgeom[x, 3] %>% sf::st_drop_geometry()
lapply(tmp, function(x) { if (length(x) == 0) NA else x })
}) %>%
unlist(),
cbsa = lapply(wlgeom, function(x) {
tmp <- lgeom[x, 4] %>% sf::st_drop_geometry()
lapply(tmp, function(x) { if (length(x) == 0) NA else x })
}) %>%
unlist()
) %>%
sf::st_drop_geometry()
}
if (geo_large == 'csa') {
stopifnot(is.numeric(year), year >= 2011) # CSAs only available 2011 onward
lgeom <- suppressMessages(suppressWarnings(tigris::combined_statistical_areas(year = year)))
wlgeom <- sf::st_within(out_dat, lgeom)
out_dat <- out_dat %>%
dplyr::mutate(
oid = lapply(wlgeom, function(x) {
tmp <- lgeom[x, 2] %>% sf::st_drop_geometry()
lapply(tmp, function(x) { if (length(x) == 0) NA else x })
}) %>%
unlist(),
csa = lapply(wlgeom, function(x) {
tmp <- lgeom[x, 3] %>% sf::st_drop_geometry()
lapply(tmp, function(x) { if (length(x) == 0) NA else x })
}) %>%
unlist()
) %>%
sf::st_drop_geometry()
}
if (geo_large == 'metro') {
stopifnot(is.numeric(year), year >= 2011) # Metropolitan Divisions only available 2011 onward
lgeom <- suppressMessages(suppressWarnings(tigris::metro_divisions(year = year)))
wlgeom <- sf::st_within(out_dat, lgeom)
out_dat <- out_dat %>%
dplyr::mutate(
oid = lapply(wlgeom, function(x) {
tmp <- lgeom[x, 4] %>% sf::st_drop_geometry()
lapply(tmp, function(x) { if (length(x) == 0) NA else x })
}) %>%
unlist(),
metro = lapply(wlgeom, function(x) {
tmp <- lgeom[x, 5] %>% sf::st_drop_geometry()
lapply(tmp, function(x) { if (length(x) == 0) NA else x })
}) %>%
unlist()
) %>%
sf::st_drop_geometry()
}
# Count of racial or ethnic subgroup populations
## Count of racial or ethnic comparison subgroup population
if (length(in_subgroup) == 1) {
out_dat <- out_dat %>%
dplyr::mutate(subgroup = .[, in_subgroup])
} else {
out_dat <- out_dat %>%
dplyr::mutate(subgroup = rowSums(.[, in_subgroup]))
}
# Compute G for race or ethnicity inequality
## From Gini (1921) https://doi.org/10.2307/2223319
## G = \sum_{n}^{i=1}\sum_{n}^{j=1}\left [ t_{i}t_{j}\left| p_{i}-p_{j}\right| /2T^{2}P(1-P)\right ]
## Where:
## t_{i} is the total population of area i
## t_{j} is the total population of area j
## p_{i} is the proportion of the subgroup population of area i
## p_{j} is the proportion of the subgroup population of area j
## T is the total population of all smaller geographical units
## P is the proportion of the subgroup population of all smaller geographical units
## Compute
out_tmp <- out_dat %>%
.[.$oid != 'NANA', ] %>%
split(., f = list(.$oid)) %>%
lapply(., FUN = g_fun, omit_NAs = omit_NAs) %>%
utils::stack(.) %>%
dplyr::mutate(G_re = values, oid = ind) %>%
dplyr::select(G_re, oid)
# Warning for missingness of census characteristics
missingYN <- out_dat[, c('G_incE', 'TotalPopE', in_subgroup)]
names(missingYN) <- out_names
missingYN <- missingYN %>%
tidyr::pivot_longer(
cols = dplyr::everything(),
names_to = 'variable',
values_to = 'val'
) %>%
dplyr::group_by(variable) %>%
dplyr::summarise(
total = dplyr::n(),
n_missing = sum(is.na(val)),
percent_missing = paste0(round(mean(is.na(val)) * 100, 2), ' %')
)
if (quiet == FALSE) {
# Warning for missing census data
if (sum(missingYN$n_missing) > 0) {
message('Warning: Missing census data')
}
}
# Format output
out <- out_dat %>%
dplyr::left_join(out_tmp, by = dplyr::join_by(oid))
if (geo_large == 'state') {
out <- out %>%
dplyr::select(oid, state, G_re) %>%
unique(.) %>%
dplyr::mutate(GEOID = oid) %>%
dplyr::select(GEOID, state, G_re)
}
if (geo_large == 'county') {
out <- out %>%
dplyr::select(oid, state, county, G_re) %>%
unique(.) %>%
dplyr::mutate(GEOID = oid) %>%
dplyr::select(GEOID, state, county, G_re)
}
if (geo_large == 'tract') {
out <- out %>%
dplyr::select(oid, state, county, tract, G_re) %>%
unique(.) %>%
dplyr::mutate(GEOID = oid) %>%
dplyr::select(GEOID, state, county, tract,G_re)
}
if (geo_large == 'place') {
out <- out %>%
dplyr::select(oid, place, G_re) %>%
unique(.) %>%
dplyr::mutate(GEOID = oid) %>%
dplyr::select(GEOID, place, G_re)
}
if (geo_large == 'cbsa') {
out <- out %>%
dplyr::select(oid, cbsa, G_re) %>%
unique(.) %>%
dplyr::mutate(GEOID = oid) %>%
dplyr::select(GEOID, cbsa, G_re)
}
if (geo_large == 'csa') {
out <- out %>%
dplyr::select(oid, csa, G_re) %>%
unique(.) %>%
dplyr::mutate(GEOID = oid) %>%
dplyr::select(GEOID, csa, G_re)
}
if (geo_large == 'metro') {
out <- out %>%
dplyr::select(oid, metro, G_re) %>%
unique(.) %>%
dplyr::mutate(GEOID = oid) %>%
dplyr::select(GEOID, metro, G_re)
}
out <- out %>%
.[.$GEOID != 'NANA', ] %>%
dplyr::filter(!is.na(GEOID)) %>%
dplyr::distinct(GEOID, .keep_all = TRUE) %>%
dplyr::arrange(GEOID) %>%
dplyr::as_tibble()
out_dat <- out_dat %>%
dplyr::rename(G_inc = G_incE) %>%
dplyr::arrange(GEOID) %>%
dplyr::as_tibble()
out <- list(g = out, g_data = out_dat, missing = missingYN)
return(out)
}