-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathcatcorr.js
853 lines (754 loc) · 27.5 KB
/
catcorr.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
(function (exports) {
catcorr.version = "0.2.0";
function get_matching_responses(responses) {
// this is the intersection of all people matching responses
// across all selected dimensions
var result = responses;
var selected_questions = questions
.filter(function (q) {return q.has_selection()});
selected_questions.forEach(function (q, i) {
result = result.filter(function (response) {
return q.response_matches_selected_choices(response);
})
})
return result;
}
function init_groups(questions, responses) {
var groups = questions
.map(function(question){
var answers = responses
.map(function(r) { return r[question.number]; });
var counts = multi_count(answers);
return make_group(counts, question);
});
groups.update = function (responses) {
var matching_responses = get_matching_responses(responses);
groups.forEach(function(group){
var answers = matching_responses
.map(function(r){
return r[group.question.number];})
var counts = multi_count(answers);
group.all.forEach(function (o, k) {
o.value = counts[k] || 0;
})
});
}
return groups
}
function histogram_matching_responses(responses) {
// A
// get_histograms function which takes responses and generates a
// object question.number: its histogram for those
// responses.
// question.number : [{key:choice, value: count},...]
// question.number : [{choice:"Male", count:20},...]
// to initialize catcorr, we'll call
// get_histograms(everybody), In particular,
// get_matching_responses(responses) should just work when no
// dimensions are selected.
var matching_responses = get_matching_responses(responses);
var groups = questions
.map(function(question){
var answers = matching_responses
.map(function(r) { return r[question.number]; });
var counts = multi_count(answers);
return make_group(counts, question);
});
return groups;
}
function make_group(counts, question){
var out = {"counts":counts};
var to_object = function(v,k){return {key:+k,
value:v};}
out.all = _.map(out.counts, to_object);
out.__all__ = question.__all__;
out.top = function(){
return d3.max(_.values(this.counts));
// return the top response
}
out.all.value = function(){
return d3.sum(out.all, function(o){return o.value});
}
out.question = question;
return out;
}
function has_selection(){
// question needs to bind has_selection method
// question needs to maintain state of whether or not it has a
// selection on it
// question needs to remember which choices have been selected
return this.selected_choices.length > 0;
}
function response_matches_selected_choices(response){
// question needs response_matches_selected_choices method which
// looks into that response and sees if it has choices that match
// this question's selected choices.
var person_choices = response[this.number];
var selected = this.selected_choices;
if (typeof(person_choices) === "number") {
return _.contains(selected,
person_choices);
} else {
return _.any(person_choices,
function (person_choice){
return _.contains(selected,
person_choice)
});
}
}
exports.catcorr = catcorr;
function catcorr(div_id, data, callback) {
// callback is called after charts are rendered.
// #########################
// debugging --global
questions = data.questions;
responses = data.responses;
// create the label2index lookup for quickly calculating the
// x-coordinate on survey answers
// debugging so this is global
label2index = {};
questions.forEach(function (q) {
// add additional functions questions here
q.has_selection = has_selection;
q.selected_choices = [];
q.response_matches_selected_choices = response_matches_selected_choices;
label2index[q.number] = {};
q.choices.forEach(function (choice, j) {
label2index[q.number][choice] = j;
});
});
// re-cast non-numeric answers into the corresponding number in
// label2index so that this whole crossfilter bizness works
// NOTE: This changes the underlying data passed in. In
// particular, if some choices are missing from questions,
// then those values in responses will get erased.
responses.forEach(function (r) {
questions.forEach(function (q) {
var choice = r[q.number];
if (typeof(choice) === "string"){
r[q.number] = label2index[q.number][choice];
} else if (choice) {
r[q.number] = choice.map(function(c){
return label2index[q.number][c];});
}
});
});
// add the questions text
questions.forEach(function (q) {
q.div = d3.select(div_id)
.append("div")
.attr("id", q.number+"-chart")
.attr("class", "catcorr chart " + q.type);
q.div.append("div")
.attr("class", "title")
.text(q.number+'. '+q.text);
});
// Various formatters.
var formatNumber = d3.format(",d");
// Create the crossfilter for the relevant dimensions and groups.
catcorr.groups = [];
questions.forEach(function (q, i) {
var answers = responses.map(function(r){
return r[q.number]});
var counts = multi_count(answers);
q.__all__ = _.values(counts);
});
// make the groups for the first time
catcorr.groups = init_groups(questions, responses);
catcorr.groups.update(responses)
// record the total number of respondents in each group. this is
// used later to correctly figure out the proportionPath lines
// below
// create a chart for each dimension
var xscales = [], xscale;
var yscale = d3.scale.linear().range([100,0]);
var tooltips = [], tooltip;
var charts = [], chart;
var bar_width = 80;
var bar_gap = 3;
questions.forEach(function (q, i) {
// get the labels for this axis
var labels = {};
q.choices.forEach(function (choice, c) {
labels[c] = choice;
});
// initialize the tooltips if d3.tip is included
if (d3.tip) {
tooltip = d3.tip()
.attr('class', 'd3-tip')
.direction('s')
.html(function (d) {return "awesome " + d});
tooltips.push(tooltip);
}
// create the scale
var a=0, b=q.choices.length-1;
xscale = d3.scale.linear()
.domain([-0.5, b+0.5])
.rangeRound([0, bar_width*((b-a)+1)])
xscale.labels = labels;
xscales.push(xscale);
// update the yscale to have the maximal possible domain
// so that heights (and areas) on each of the charts mean
// the same thing
yscale.domain([0, d3.max([
yscale.domain()[1], catcorr.groups[i].top(1) // [0].value
])])
// create the chart
chart = barChart(q)
.group(catcorr.groups[i])
.x(xscale);
charts.push(chart);
});
// Given our array of charts, which we assume are in the same
// order as the .chart elements in the DOM, bind the charts to
// the DOM and render them. We also listen to the chart's
// brush events to update the display.
var chart = d3.selectAll(".catcorr.chart")
.data(charts);
// add an <aside> element that displays fraction of elements
// currently selected
var legend = d3.select(div_id)
.append("aside")
.attr("id", "legend")
.attr("class", "catcorr")
.html("<div style='clear:both;margin-top:20px'></div>"+
"<span id='active'>-</span> "+
"<span>/</span> <span id='total'>-</span> <br/> selected respondents");
var legend_width=200, legend_height=120;
var legend_svg = legend.insert("svg", "div")
.attr("width", legend_width)
.attr("height", legend_height)
.append("g")
.attr("transform", "translate(0,0)");
// add a clear div at the bottom as temporary fix for #18
d3.select(div_id)
.append("div")
.style("clear", "both");
// draw the bars on the legend
legend_svg.selectAll(".bar")
.data(["all_background", "background", "foreground",
"all_proportion"])
.enter().append("path")
.attr("class", function(d, i) {
if (i===0){
return "catcorr "+d+" all_bar outcome";
}
else if(i===3) {
return "catcorr "+d+" all_bar outcome";
}
return "catcorr "+d+" bar outcome";
});
legend_svg.select(".all_background.all_bar")
.attr("d", ["M",
(legend_width-(bar_width-2*bar_gap))/2,
",",10,"v",100,"h",bar_width-2*bar_gap,
"v",-100].join(""));
legend_svg.select(".foreground.bar")
.attr("d", ["M",
(legend_width-(bar_width-2*bar_gap))/2,
",",80,"v",30,"h",bar_width-2*bar_gap,
"v",-30].join(""));
legend_svg.select(".all_proportion.all_bar")
.attr("d", ["M",
(legend_width-(bar_width-2*bar_gap))/2,
",",40,"h",bar_width-2*bar_gap,
"M", legend_width/2,",",15,"v",44].join(""));
// display all respondents label
legend_svg.append("foreignObject")
.attr("class", "catcorr legend")
.attr("width", (legend_width-bar_width)/2)
.attr("height", "3em")
.attr("x", legend_width/2+bar_width/2+bar_gap)
.attr("y", 0)
.text("all respondents");
legend_svg.append("path")
.attr("class", "catcorr legend")
.attr("d", ["M",legend_width/2+bar_width/2,",",7,
"h",-15,"l",-7,",",7].join(""));
// display selected respondents label
legend_svg.append("foreignObject")
.attr("class", "catcorr legend")
.attr("width", (legend_width-bar_width)/2)
.attr("height", "3em")
.attr("x", legend_width/2+bar_width/2+bar_gap)
.attr("y", 106)
.text("selected respondents");
legend_svg.append("path")
.attr("class", "catcorr legend")
.attr("d", ["M",legend_width/2+bar_width/2,",",113,
"h",-15,"l",-7,",",-7].join(""));
// display expected selected respondents label
legend_svg.append("foreignObject")
.attr("class", "catcorr legend")
.attr("width", (legend_width-bar_width)/2)
.attr("height", "5em")
.attr("x", legend_width/2+bar_width/2+bar_gap)
.attr("y", 35)
.text("expected number of selected respondents");
legend_svg.append("path")
.attr("class", "catcorr legend")
.attr("d", ["M",legend_width/2+bar_width/2,",",47,
"h",-15,"l",-7,",",-7].join(""));
// display variation in expected selected respondents label
legend_svg.append("foreignObject")
.attr("class", "catcorr legend right")
.attr("width", (legend_width-bar_width)/2-20)
.attr("height", "5em")
.attr("x", 0)
.attr("y", 12)
.attr("text-align", "right")
.text("variation in expected number of selected respondents");
legend_svg.append("path")
.attr("class", "catcorr legend")
.attr("d", ["M",legend_width/2-bar_width/2-18,",",36,
"h",15,"v",22,"h",42,
"M",legend_width/2-bar_width/2-3,",",36,
"v",-22,"h",42].join(""));
// if there are more than one type of question, render a
// legend for the colors
var question_types = d3.set();
questions.forEach(function (q) {
question_types.add(q.type);
});
question_types = question_types.values();
if (question_types.length>1) {
var swatch_w = 20, swatch_gap=5;
legend.insert("div", "svg")
.style("clear", "both")
var color_legend_svg = legend.insert("svg", "div")
.attr("width", legend_width)
.attr("height",
question_types.length*(swatch_w+swatch_gap)+swatch_gap)
.style("margin-bottom", 20)
.append("g")
.attr("transform", "translate(0,0)");
color_legend_svg.selectAll()
.data(question_types).enter()
.append("path")
.attr("class", function (d) {
return "catcorr foreground bar "+d
})
.attr("d", function (d, i) {
return ["M", swatch_w/2, ",",
swatch_gap+i*(swatch_w+swatch_gap),
"h", swatch_w, "v", swatch_w, "h", -swatch_w]
.join("")
})
color_legend_svg.selectAll()
.data(question_types).enter()
.append("text")
.attr("class", "catcorr legend")
.attr("x", swatch_w*2 + bar_gap)
.attr("y", function (d, i) {
return swatch_gap + i*(swatch_w+swatch_gap) + swatch_w/2
})
.attr("dy", "0.35em")
.text(function (d) { return d});
}
// Render the total.
d3.selectAll("aside.catcorr #total")
.text(formatNumber(responses.length));
renderAll();
if (callback){
callback();
}
// Renders the specified chart or list.
function render(method) {
d3.select(this).call(method);
}
// Whenever the brush moves, re-rendering everything.
function renderAll() {
chart.each(render);
d3.select("aside.catcorr #active")
.text(formatNumber(catcorr.groups[0].all.value()));
}
window.filter = function(filters) {
filters.forEach(function(d, i) { charts[i].filter(d); });
renderAll();
};
function barChart(question) {
if (!barChart.id) barChart.id = 0;
var margin = {top: 10, right: 10, bottom: 20, left: 10},
x,
y = yscale,
tooltip = tooltips[barChart.id],
id = barChart.id++,
axis = d3.svg.axis().orient("bottom").tickSize(6,0,0),
group,
round;
function chart(div) {
var width = d3.max(x.range()),
height = d3.max(y.range());
// create ticks at these particular values
axis.tickValues(d3.range(0,d3.keys(x.labels).length));
div.each(function() {
var div = d3.select(this),
g = div.select("g");
// Create the skeletal chart.
if (g.empty()) {
div.select(".title").append("a")
.attr("class", "catcorr reset")
.text("reset")
.style("display", "none")
.on("click", function () {
d3.select(this).style("display", "none");
d3.select(this.parentNode.parentNode)
.selectAll(".catcorr.selected")
.classed("not", true);
questions[id].selected_choices = [];
catcorr.groups.update(responses)
renderAll();
});
g = div.append("svg")
.attr("width", width + margin.left + margin.right)
.attr("height", height + margin.top + margin.bottom)
.append("g")
.attr("transform", "translate(" + margin.left + "," + margin.top + ")");
// create a hatching pattern for displaying
// the selected choices
// http://stackoverflow.com/a/14500054/564709
var pattern = div.select("svg")
.insert("pattern", "g")
.attr("id", "diagonalHatch")
.attr("patternUnits", "userSpaceOnUse")
.attr("width", 10)
.attr("height", 10);
pattern.append("path")
.attr("class", "catcorr hatching")
.attr("d", "M-1,1l2,-2M0,10l10,-10M9,11l2,-2");
// invoke tooltip for this visualization
if (tooltip) {
g.call(tooltip);
}
g.append("clipPath")
.attr("id", "clip-" + id)
.append("rect")
.attr("width", width)
.attr("height", height);
g.selectAll(".bar")
.data(["all_background", "background", "foreground",
"all_proportion"])
.enter().append("path")
.attr("class", function(d, i) {
if (i===0){
return "catcorr "+d+" all_bar "+question.type;
}
else if(i===3) {
return "catcorr "+d+" all_bar "+question.type;
}
return "catcorr "+d+" bar "+question.type;
})
.datum(catcorr.groups[id].all);
g.selectAll(".foreground.bar")
.attr("clip-path", "url(#clip-" + id + ")");
g.append("g")
.attr("class", "catcorr axis")
.attr("transform", "translate(0," + height + ")")
.call(axis);
// manipulate the axis label text
var labels = g.selectAll("g.axis text")
.text(function (d) {
var n = 20;
var s = x.labels[d];
if (s===undefined) {
return '';
}
else if (s.length > n) {
var parts = s.substring(0,n-3).split(" ");
s = parts.slice(0,parts.length-1).join(" ");
s += "...";
}
return s;
});
if (tooltip) {
tooltip.html(function (d) {
return x.labels[d];
});
labels.on("mouseover", tooltip.show)
.on("mouseout", tooltip.hide);
}
// initialize the selected regions to make
// things clickable
gSelected = g.selectAll(".catcorr.selected")
.data(catcorr.groups[id].all)
.enter()
.append("rect")
.attr("class", "catcorr not selected")
.attr("fill", "url(#diagonalHatch)")
.attr("x", function (d) {return x(d.key) - (0.5*bar_width - bar_gap)})
.attr("width", bar_width-2*bar_gap)
.attr("y", y.range()[1])
.attr("height", y.range()[0])
.on("click", update_selection);
}
// this is what actually uses the group data to set
// the path. good.
g.selectAll(".bar").attr("d", barPath);
// only render the .all_bar data once at the beginning
g.selectAll(".all_background.all_bar")
.attr("d", function (groups, i) {
var v = d3.select(this).attr("d");
if (v===null) {
return barPath(groups, i);
}
return v;
});
// render the .all_proportion.all_bar to show the
// proportion of selected responses that fall in
// this group
if (questions[id].selected_choices.length === 0) {
g.selectAll(".all_proportion.all_bar")
.attr("d", proportionPath);
}
// make sure the asterisk's don't exist on
// dimensions that are selected
else {
g.selectAll(".asterisk").remove();
g.selectAll(".fa").remove();
}
});
function update_selection(d) {
// enforce the toggling behavior to keep
// track of which choices have been
// selected at the data level
var selected_index = questions[id].selected_choices.indexOf(d.key);
if (selected_index > -1) {
questions[id].selected_choices.splice(selected_index, 1);
d3.select(this).classed("not", true);
}
else {
questions[id].selected_choices.push(d.key);
d3.select(this).classed("not", false);
}
if (questions[id].selected_choices.length === 0) {
d3.select(this.parentNode.parentNode.parentNode)
.select(".title a").style("display", "none");
}
else {
d3.select(this.parentNode.parentNode.parentNode)
.select(".title a").style("display", null);
}
catcorr.groups.update(responses)
renderAll();
}
function barPath(groups) {
var path = [],
i = -1,
n = groups.length,
d;
while (++i < n) {
d = groups[i];
path.push("M", x(d.key-0.5)+bar_gap, ",",
height, "V", y(d.value), "h",bar_width-2*bar_gap,
"V", height);
}
return path.join("");
}
function calc_confidence_intervals(n_selected) {
// this is the number of total number of people
var N = responses.length;
var k = get_k(responses, group)
// create an array of the probabilities for each
// group. alpha is the hyperparameter of the
// categorical distribution
// http://en.wikipedia.org/wiki/Categorical_distribution
var p = group.__all__.map(function (x) {
return calc_p(x, N, k);
});
var confidence_intervals, bound;
var get_bound = function(pp){
return 1.96*Math.sqrt((pp*(1-pp))/n_selected);
}
confidence_intervals = p.map(function(pp,i){
// TODO Think carefully about whether this
// should be N or n here
return [
n_selected * Math.max(pp - get_bound(pp), 0),
n_selected * Math.min(pp + get_bound(pp), 1)
];})
// debugging probabilities...
var pizza = catcorr.debug[group.question.number];
if (!pizza){
catcorr.debug[group.question.number] = {};
pizza = catcorr.debug[group.question.number];
}
pizza["conf"] = {"N":N, "k":k, "p":p,
"confidence":confidence_intervals};
return confidence_intervals;
}
function backer_box(xc) {
return "M"+(xc-bar_width/2)+","+(-margin.top)+
"h"+bar_width+
"v"+(margin.top+y.range()+margin.bottom)+
"h"+(-bar_width)+
"Z";
}
function proportionPath(answers) {
// remove all significance from before
var svg = d3.select(this.parentNode);
svg.selectAll(".asterisk").remove();
svg.selectAll(".fa").remove();
var path = [],
i = -1,
n_answers = answers.length,
answer, prob, expected, lwr, upr,
n_selected = catcorr.groups[0].all.value(),
n_responses = responses.length,
n_choices = group.__all__.length,
confidence_intervals;
if (n_selected!=responses.length) {
var confidence_intervals = calc_confidence_intervals(n_selected)
}
while (++i < n_answers) {
answer = answers[i];
n_choices = get_k(responses, group);
prob = calc_p(group.__all__[i], n_responses,
n_choices);
expected = n_selected*prob;
save_stuff(group, expected, confidence_intervals,
n_selected, prob, answers, i);
path.push("M", x(answer.key-0.5)+bar_gap, ",",
y(expected),
"h", bar_width-2*bar_gap);
if (confidence_intervals) {
lwr = confidence_intervals[i][0];
upr = confidence_intervals[i][1];
path.push("M", x(answer.key), ",", y(lwr),
"v", y(upr)-y(lwr));
// draw an asterisk above this bar
if (answer.value < lwr || upr < answer.value) {
// font-awesome arrow-up: "\f062"
// arrow-down: "\f063"
// trick from http://stackoverflow.com/questions/14984007/how-do-i-include-a-font-awesome-icon-in-my-svg
var hi_lo = "\uf062" // high
if (answer.value < lwr) {
hi_lo = "\uf063" // lo;
}
svg.insert("path", "path.catcorr.all_bar")
.attr("class", "catcorr asterisk")
.attr("d", backer_box(x(answer.key)));
svg.append("text")
.attr("font-size","70px")
.attr("x",x(answer.key)-margin.left)
.attr("y",margin.top+5)
.attr("class", "fa")
.text(hi_lo);
}
}
}
return path.join("");
}
function resizePath(d) {
var e = +(d == "e"),
x = e ? 1 : -1,
y = height / 3;
return "M" + (.5 * x) + "," + y
+ "A6,6 0 0 " + e + " " + (6.5 * x) + "," + (y + 6)
+ "V" + (2 * y - 6)
+ "A6,6 0 0 " + e + " " + (.5 * x) + "," + (2 * y)
+ "Z"
+ "M" + (2.5 * x) + "," + (y + 8)
+ "V" + (2 * y - 8)
+ "M" + (4.5 * x) + "," + (y + 8)
+ "V" + (2 * y - 8);
}
}
// jasondavies fanciness. binding methods to this function
chart.margin = function(_) {
if (!arguments.length) return margin;
margin = _;
return chart;
};
chart.x = function(_) {
if (!arguments.length) return x;
x = _;
axis.scale(x);
return chart;
};
chart.y = function(_) {
if (!arguments.length) return y;
y = _;
return chart;
};
chart.group = function(_) {
if (!arguments.length) return group;
group = _;
return chart;
};
chart.round = function(_) {
if (!arguments.length) return round;
round = _;
return chart;
};
return chart;
}
};
})(this)
function extent_to_range(extent){
// takes something like [-.5, 2.5] --> [0,1,2]
var a = extent[0] + .5 , b = extent[1];
return _.range(a, b)
}
function ravel(iterables){
var out = [];
iterables.forEach(
function(iterable){
iterable.forEach(
function(thing){ out.push(thing) })});
return out;
}
function multi_count(answers){
// counts all the singletons in a list of lists or in a list
if (typeof(answers[0]) === "object"){
// answers is a list of lists so ravel it into a long list of singletons
answers = ravel(answers);
}
// count singletons
return _.countBy(answers);
}
function get_k(responses,group){
var k = group.__all__.length;
if (typeof(responses[0][group.question.number])==="object"){
k = 2;
}
return k;
}
// previous versions simulated a random process 250
// times to estimate the 95% confidence
// intervals. This was all well and good, but the
// simulations were not exact and caused the interface
// to flicker (which is pretty confusing for
// users). This approach uses an approximation to
// estimate the 95% confidence interval, but because
// it is an exact solution it avoids the flickering
// problem
// http://stats.stackexchange.com/a/19142/31771
function calc_p(n_people_who_chose_this,
n_total_responses,
n_choices) {
// in multichoice case, n_total_responses is
// really the number of total checked boxes. We
// probably care more about number of people who
// chose this vs people who didnt -- which in the
// multichoice case is != n_total_responses.
var pseudocount = 1;
return ((n_people_who_chose_this + pseudocount) /
(n_total_responses + pseudocount*n_choices));
}
catcorr.debug = {}
function save_stuff(group, expected, confidence_intervals, N, p, answers, i){
var number = group.question.number;
if (confidence_intervals){
var c = confidence_intervals[i];
catcorr.debug[number][i] = [expected, c, N, p, group, answers, i];
}
}
function assert(){
// select "male"
var germany = catcorr.debug.S2[0];
var expected = germany[0]
var bounds = germany[1]
console.assert(Math.abs((bounds[0] - 62.78)) < .01)
console.assert(Math.abs((bounds[1] - 92.71)) < .01)
console.assert(Math.abs(expected - 77.75)<.01)
}