-
Notifications
You must be signed in to change notification settings - Fork 3
/
train_ccfnet.py
323 lines (250 loc) · 11 KB
/
train_ccfnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import torch
import torch.nn as nn
import torchvision
import torch.optim as optim
import torch.backends.cudnn as cudnn
from torch.nn.utils import clip_grad_norm_
import torchvision
import os
import numpy as np
from dataset import ucf101
from dataset import hmdb51
from dataset import mouse
from dataset import Larva
from get_model import get_model
import ccfnet
import time
from opts import arg_parser
parser = arg_parser()
args = parser.parse_args()
best_prec1 = 0
ckpt_path = '/4T/zhujian/ckpt'
def build_dir():
if os.path.exists(os.path.join('logdir',args.dataset,str(args.split),args.modality,args.model)) is False:
os.makedirs(os.path.join('logdir',args.dataset,str(args.split),args.modality,args.model))
if os.path.exists(os.path.join(ckpt_path,args.dataset,str(args.split),args.modality,args.model,'last')) is False:
os.makedirs(os.path.join(ckpt_path,args.dataset,str(args.split),args.modality,args.model,'last'))
if os.path.exists(os.path.join(ckpt_path,args.dataset,str(args.split),args.modality,args.model,'best')) is False:
os.makedirs(os.path.join(ckpt_path,args.dataset,str(args.split),args.modality,args.model,'best'))
def load_pretrained_model():
rgb_ckpt = torch.load(os.path.join(ckpt_path,args.dataset,str(args.split),'rgb',args.model,'best','model.ckpt'))
flow_ckpt = torch.load(os.path.join(ckpt_path,args.dataset,str(args.split),'flow',args.model,'best','model.ckpt'))
rgb = {}
flow = {}
for k,v in rgb_ckpt.items():
rgb[k[7:]] = v
for k,v in flow_ckpt.items():
flow[k[7:]] = v
return rgb, flow
build_dir()
def main():
global best_prec1
batch_size = args.batch_size
lr = args.learning_rate
epochs = args.epochs
val_freq = args.val_freq
num_frames = args.num_frames
num_workers = args.num_workers
assert args.modality == 'fusion'
if args.dataset == 'ucf101':
train_dataset, valid_dataset, num_classes = ucf101.make_data(num_frames=num_frames,
batch_size=args.batch_size, model=args.model, modality=args.modality, split=args.split,
sample=args.sample,num_workers=args.num_workers)
input_size = 224
elif args.dataset == 'hmdb51':
train_dataset, valid_dataset, num_classes = hmdb51.make_data(num_frames=num_frames,
batch_size=args.batch_size, model=args.model, modality=args.modality, split=args.split,
sample=args.sample,num_workers=args.num_workers)
input_size = 224
elif args.dataset == 'mouse':
train_dataset, valid_dataset, num_classes = mouse.make_data(num_frames=num_frames,
batch_size=args.batch_size, model=args.model, modality=args.modality, split=args.split,
sample=args.sample,num_workers=args.num_workers)
input_size = 224
elif args.dataset == 'Larva':
train_dataset, valid_dataset, num_classes = Larva.make_data(num_frames=num_frames,
batch_size=args.batch_size, model=args.model, modality=args.modality, split=args.split,
sample=args.sample,num_workers=args.num_workers)
input_size = 224
print(f'Dataset {args.dataset},use split {args.split}')
model = ccfnet.ccfnet(args.model, num_classes, input_size, args.num_frames, dropout=args.rgb_dr)
rgb_ckpt, flow_ckpt = load_pretrained_model()
model.rgb_model.load_state_dict(rgb_ckpt)
model.flow_model.load_state_dict(flow_ckpt)
print(f'load pretrained {args.model} of {args.dataset} successfully')
model = nn.DataParallel(model,device_ids=args.gpus).cuda()
param = model.parameters()
param = filter(lambda p: p.requires_grad, param)
if args.resume:
if os.path.exists(os.path.join(ckpt_path,args.dataset,str(args.split),args.modality,args.model,'last')):
print('=> loading checkpoint {}'.format(os.path.join(ckpt_path,args.dataset,str(args.split),args.modality,args.model,'last')))
ckpt = torch.load(os.path.join(ckpt_path,args.dataset,str(args.split),args.modality,args.model,'last','model.ckpt'))
model.load_state_dict(ckpt)
else:
print('=> no checkpoint found at {}'.format(os.path.join(ckpt_path,args.dataset,str(args.split),args.modality,args.model,'last')))
torch.backends.cudnn.benchmark = True
criterion = torch.nn.CrossEntropyLoss().cuda()
if args.is_validate:
prec1 = validate(valid_dataset, model, criterion, 0)
return
optimizer = torch.optim.SGD(
param,
args.learning_rate,
momentum=0.9,
weight_decay=args.weight_decay)
for epoch in range(args.epochs):
adjust_learning_rate(optimizer, epoch, args.lr_step)
train(train_dataset, model, criterion, optimizer, epoch)
if (epoch + 1) % args.val_freq == 0 or epoch == args.epochs - 1:
prec1 = validate(valid_dataset, model, criterion, epoch)
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
if is_best:
torch.save(model.state_dict(),os.path.join(ckpt_path,args.dataset,str(args.split),args.modality,args.model,'best','model.ckpt'))
torch.save(model.state_dict(),os.path.join(ckpt_path,args.dataset,str(args.split),args.modality,args.model,'last','model.ckpt'))
def train(data_loader, model, criterion, optim, epoch):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
if 'i3d' not in args.model and args.partial_bn :
model.module.partialBN(True)
model.train()
end = time.time()
for i, sample in enumerate(data_loader):
data_time.update(time.time() - end)
label = sample['label_num']
rgb = sample['rgb']
flow = sample['flow']
rgb = rgb.cuda(async=True)
flow = flow.cuda(async=True)
label = label.cuda(async=True)
r_out, f_out, fusion_out = model(rgb, flow)
if args.eval_type == 'fusion':
output = fusion_out
else:
output = r_out + f_out + fusion_out
loss = criterion(output, label)
prec_1, prec_5 = accuracy(output.data, label, topk=(1,2))
losses.update(loss.item(), rgb.size(0))
top1.update(prec_1.data, rgb.size(0))
top5.update(prec_5.data, rgb.size(0))
optim.zero_grad()
loss.backward()
if args.clip_gradient is not None:
total_norm = clip_grad_norm_(model.parameters(), args.clip_gradient)
# if total_norm > args.clip_gradient:
# print("clipping gradient: {} with coef {}".format(total_norm, args.clip_gradient / total_norm))
optim.step()
batch_time.update(time.time() - end)
end = time.time()
if (i+1) % args.print_freq == 0:
print(('Epoch: [{0}][{1}/{2}], lr: {lr:.5f}\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
epoch, i, len(data_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, lr=optim.param_groups[-1]['lr'])))
print(f'one epoch time {batch_time.sum}s')
if (epoch + 1) % args.val_freq == 0 or epoch == args.epochs - 1:
template = "Epoch:{}, Loss: {:.2f}, Prec1 :{:.2f}\n"
with open(os.path.join('logdir',args.dataset,str(args.split),args.modality,args.model,'train_log.txt'),'a') as f:
f.writelines(
template.format(
epoch, losses.avg, top1.avg
)
)
def validate(data_loader, model, criterion, epoch):
model.eval()
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
with torch.no_grad():
end = time.time()
for i, sample in enumerate(data_loader):
label = sample['label_num']
rgb = sample['rgb']
flow = sample['flow']
rgb = rgb.cuda(async=True)
flow = flow.cuda(async=True)
label = label.cuda(async=True)
r_out, f_out, fusion_out = model(rgb, flow)
if args.eval_type == 'fusion':
output = fusion_out
else:
output = r_out + f_out + fusion_out
loss = criterion(output, label)
prec_1, prec_5 = accuracy(output.data, label, topk=(1,2))
losses.update(loss.item(), rgb.size(0))
top1.update(prec_1.data, rgb.size(0))
top5.update(prec_5.data, rgb.size(0))
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print(('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'.format(
i, len(data_loader), batch_time=batch_time, loss=losses,
top1=top1)))
template = "Epoch:{}, Loss: {:.2f}, Prec1 :{:.2f}\n"
with open(os.path.join('logdir',args.dataset,str(args.split),args.modality,args.model,'valid_log.txt'),'a') as f:
print(
template.format(
epoch, losses.avg, top1.avg
)
)
f.writelines(
template.format(
epoch, losses.avg, top1.avg
)
)
return top1.avg
class LabelRecord(object):
def __init__(self):
self.reset()
def reset(self):
self.record = []
def update(self, val):
self.record.extend(val)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def adjust_learning_rate(optim, epoch, lr_step):
decay = 0.1 ** (sum(epoch >= np.array(lr_step)))
lr = args.learning_rate * decay
decay = args.weight_decay
for param_group in optim.param_groups:
# param_group['lr'] = lr
if args.partial_bn:
param_group['lr'] = lr * param_group['lr_mult']
param_group['weight_decay'] = decay * param_group['decay_mult']
else:
param_group['lr'] = lr
def accuracy(output, target, topk=(1,)):
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1,-1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100 / batch_size))
return res
if __name__ == "__main__":
main()