-
Notifications
You must be signed in to change notification settings - Fork 0
/
hmdb_2d.py
458 lines (385 loc) · 17.9 KB
/
hmdb_2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
from __future__ import print_function
from __future__ import division
from __future__ import absolute_import
import os
import tensorflow as tf
import skvideo.io
import cv2
import numpy as np
from Augamentation import DataAugmentation
import random
class hmdb_dataset:
def __init__(self,
video_path_include_label='./hmdb51/',
flow_u_path = 'hmdb51_tvl1_flow/u',
flow_v_path = 'hmdb51_tvl1_flow/v',
split_number=0,
is_training_split=True,
frame_counts=10,
image_size=224,
batch_size = 24,
epoch=40,
new_length = 10,
prefetch_buffer_size=24,
eval_type='rgb',
test_crop='multi',
preprocess_name='pytorch'):
self._videl_path_include_label = video_path_include_label
self._flow_u_path = flow_u_path
self._flow_v_path = flow_v_path
self._split_number = split_number
self._FRAME_COUNTS = frame_counts
self._IMAGE_SIZE = image_size
self._is_training_split = is_training_split
self._train_split, self._test_split = self.genrate_data ()
self._epochs_completed = 0
self._index_in_epoch = 0
self._batch_size = batch_size
self._epoch = epoch
self._test_crop = test_crop
self._eval_type = eval_type
self._prefetch_buffer_size = prefetch_buffer_size
self._preprocess_name = preprocess_name
self._new_length = new_length
if self._is_training_split:
print('use training split %d' % split_number)
self._path = np.array (self._train_split[split_number][0])
self._label = self._train_split[split_number][1]
else:
print('use test split %d' % split_number)
self._path = np.array (self._test_split[split_number][0])
self._label = self._test_split[split_number][1]
self._num_example = len (self._path)
self._image_map = {}
self.global_set()
def global_set(self):
global _IMAGE_SIZE
global _batch_size
global test_crop
global _preprocess_name
global _new_length
_IMAGE_SIZE = self._IMAGE_SIZE
_batch_size = self._batch_size
_frame_counts = self._FRAME_COUNTS
test_crop = self._test_crop
_preprocess_name = self._preprocess_name
_new_length = self._new_length
def genrate_data(self,shuffle = True,to_one_hot = False):
hmdb_train_test_path = 'test_train_splits/testTrainMulti_7030_splits/'
path_list = os.listdir(hmdb_train_test_path)
hmdb_path = './hmdb51/'
test_split = {}
train_split = {}
hmdb_label = {}
hmdb_class = {}
for i,name in enumerate(os.listdir('./hmdb51')):
hmdb_label[name] = i
hmdb_class[i] = name
self._class = hmdb_label
self._class_ind = hmdb_class
test_path_1 = [];train_path_1 = []
test_path_2 = [];train_path_2 = []
test_path_3 = [];train_path_3 = []
test_label_1 = [];train_label_1 = []
test_label_2 = [];train_label_2 = []
test_label_3 = [];train_label_3 = []
for i,name in enumerate(path_list):
split_index = int(name[-5]) - 1
name_path = hmdb_train_test_path + name
with open(name_path,'r') as f:
name_label = hmdb_label[name[:-16]]
name_list = f.readlines()
for t_list in name_list:
t_path = hmdb_class[name_label]+'/'+t_list.split()[0]
# n_label = np.zeros([1, 51], dtype=np.float32)
# n_label[0][name_label] = 1
if t_list.split()[1] == '1':
if split_index == 0:
train_path_1.append(t_path);train_label_1.append(name_label)
elif split_index == 1:
train_path_2.append(t_path);train_label_2.append(name_label)
elif split_index == 2:
train_path_3.append(t_path);train_label_3.append(name_label)
elif t_list.split()[1] == '2':
if split_index == 0:
test_path_1.append(t_path);test_label_1.append(name_label)
elif split_index == 1:
test_path_2.append(t_path);test_label_2.append(name_label)
elif split_index == 2:
test_path_3.append(t_path);test_label_3.append(name_label)
train_split[0] = (train_path_1,train_label_1)
train_split[1] = (train_path_2,train_label_2)
train_split[2] = (train_path_3,train_label_3)
test_split[0] = (test_path_1,test_label_1)
test_split[1] = (test_path_2,test_label_2)
test_split[2] = (test_path_3,test_label_3)
return train_split,test_split
def dataset(self):
rgb_path = [os.path.join(self._videl_path_include_label,path) for path in self._path]
flow_u_path = [os.path.join (self._flow_u_path, path[:-4]) for path in self._path]
flow_v_path = [os.path.join (self._flow_v_path, path[:-4]) for path in self._path]
label = list(self._label)
rgb_dataset = tf.data.Dataset.from_tensor_slices((rgb_path))
flow_dataset = tf.data.Dataset.from_tensor_slices ((flow_u_path,flow_v_path))
label_dataset = tf.data.Dataset.from_tensor_slices((label))
if self._eval_type == 'rgb':
dataset = tf.data.Dataset.zip((rgb_dataset,label_dataset))
elif self._eval_type == 'flow':
dataset = tf.data.Dataset.zip ((flow_dataset,label_dataset))
else:
dataset = tf.data.Dataset.zip((rgb_dataset,flow_dataset,label_dataset))
print('dataset create successfully')
dataset = dataset.shuffle(buffer_size=self._num_example,reshuffle_each_iteration=True)
dataset = dataset.repeat(self._epoch)
if self._eval_type == 'rgb':
dataset = dataset.map (
lambda r_p, l: tf.py_func (self._py_func_rgb_vp, [r_p, l], [ tf.float32, tf.float32]),
num_parallel_calls=os.cpu_count())
elif self._eval_type == 'flow':
dataset = dataset.map (
lambda f_p, l: tf.py_func (self._py_func_flow_vp, [f_p, l], [tf.float32, tf.float32]),
num_parallel_calls=os.cpu_count())
else:
dataset = dataset.map (
lambda r_p, f_p, l: tf.py_func (self._py_func_vp, [r_p, f_p, l], [tf.float32, tf.float32, tf.float32]),
num_parallel_calls=os.cpu_count())
print('dataset transformation successfully')
dataset = dataset.batch(batch_size=self._batch_size,drop_remainder=True)
# dataset = dataset.apply(tf.contrib.data.batch_and_drop_remainder(batch_size=self._batch_size))
dataset = dataset.prefetch(buffer_size=self._prefetch_buffer_size)
return dataset
def test_dataset(self):
rgb_path = [os.path.join(self._videl_path_include_label,path) for path in self._path]
flow_u_path = [os.path.join (self._flow_u_path, path[:-4]) for path in self._path]
flow_v_path = [os.path.join (self._flow_v_path, path[:-4]) for path in self._path]
label = list(self._label)
rgb_dataset = tf.data.Dataset.from_tensor_slices((rgb_path))
flow_dataset = tf.data.Dataset.from_tensor_slices ((flow_u_path,flow_v_path))
label_dataset = tf.data.Dataset.from_tensor_slices((label))
if self._eval_type == 'rgb':
dataset = tf.data.Dataset.zip((rgb_dataset,label_dataset))
elif self._eval_type == 'flow':
dataset = tf.data.Dataset.zip((flow_dataset,label_dataset))
else:
dataset = tf.data.Dataset.zip((rgb_dataset,flow_dataset,label_dataset))
print('dataset create successfully')
if self._eval_type == 'rgb':
dataset = dataset.map (
lambda r_p, l: tf.py_func (self._py_func_rgb_test_vp, [r_p, l], [ tf.float32, tf.float32]),
num_parallel_calls=os.cpu_count())
elif self._eval_type == 'flow':
dataset = dataset.map (
lambda f_p, l: tf.py_func (self._py_func_flow_test_vp, [f_p, l], [tf.float32, tf.float32]),
num_parallel_calls=os.cpu_count())
else:
dataset = dataset.map (
lambda r_p, f_p, l: tf.py_func (self._py_func_test_vp, [r_p, f_p, l], [tf.float32, tf.float32, tf.float32]),
num_parallel_calls=os.cpu_count())
print('dataset transformation successfully')
dataset = dataset.batch(batch_size=self._batch_size)
dataset = dataset.prefetch(buffer_size=self._prefetch_buffer_size)
return dataset
@staticmethod
def _py_func_rgb_vp(rgb_path, label):
rgb_path = rgb_path.decode ()
rgb_cap = cv2.VideoCapture(rgb_path)
rgb_len = rgb_cap.get(cv2.CAP_PROP_FRAME_COUNT)
while 1:
index = np.random.randint(0,rgb_len)
rgb_cap.set(cv2.CAP_PROP_POS_FRAMES,index)
_ , image = rgb_cap.read()
if image is not None:
image = cv2.cvtColor(image,cv2.COLOR_BGR2RGB)
image = np.float32(image)
image = cv2.resize(image,(340,256))
rgb_file = DataAugmentation.Multiscale_crop(image)
rgb_file = DataAugmentation.horizontal_flip(rgb_file)
rgb_file = cv2.resize(rgb_file,(224,224))
if _preprocess_name == 'pytorch':
rgb_file = normalize(rgb_file)
elif _preprocess_name == 'tf':
rgb_file = tf_preprocess(rgb_file)
break
rgb_cap.release()
if label is not None:
one_hot_label = np.zeros (51, dtype=np.float32)
one_hot_label[label] = 1
return rgb_file, one_hot_label
return rgb_file
@staticmethod
def _py_func_flow_vp(flow_path, label):
f_upath , f_vpath = flow_path
flow_u_path = f_upath.decode ()
flow_v_path = f_vpath.decode ()
flow_file = os.listdir (flow_u_path)
flow_file = sorted(flow_file)
index = np.random.randint(0,len(flow_file)- _new_length)
img_list = []
for i in range(index,index+ _new_length):
img_u_path = os.path.join(flow_u_path,flow_file[i])
img_v_path = os.path.join(flow_v_path,flow_file[i])
img_u = cv2.imread(img_u_path,0)
img_v = cv2.imread(img_v_path,0)
img = np.stack([img_u,img_v],axis=-1)
img_list.append(img)
img = np.concatenate(img_list,axis=-1)
img = cv2.resize(img,(340,256))
img = DataAugmentation.Multiscale_crop(img,is_flow=True)
img = DataAugmentation.horizontal_flip(img)
img = cv2.resize(img,(224,224))
img = np.float32(img)
if _preprocess_name == 'pytorch':
img = (img / 255 - 0.5) / 0.226
elif _preprocess_name == 'tf':
img = tf_preprocess(img)
if label is not None:
one_hot_label = np.zeros (51, dtype=np.float32)
one_hot_label[label] = 1
return img, one_hot_label
return img
@staticmethod
def _py_func_vp(rgb_path, flow_path, label):
rgb_file = hmdb_dataset._py_func_rgb_vp (rgb_path,None)
flow_file = hmdb_dataset._py_func_flow_vp (flow_path,None)
one_hot_label = np.zeros (51, dtype=np.float32)
one_hot_label[label] = 1
return rgb_file, flow_file, one_hot_label
@staticmethod
def _py_func_rgb_test_vp(rgb_path, label):
rgb_path = rgb_path.decode ()
_batch_size = 25
rgb_cap = cv2.VideoCapture(rgb_path)
rgb_len = rgb_cap.get(cv2.CAP_PROP_FRAME_COUNT) - 10
total_rgb_file = []
if (rgb_len) <= _batch_size:
factor = int((_batch_size - 1) // (rgb_len) + 1)
index_list = np.concatenate([np.arange(0,rgb_len)] * factor ,axis=-1)[:_batch_size]
else:
index_list = np.arange(0,rgb_len,rgb_len//_batch_size)[:_batch_size]
for index in index_list:
rgb_cap.set(cv2.CAP_PROP_POS_FRAMES,index)
_ , image = rgb_cap.read()
if image is not None:
image = cv2.cvtColor(image,cv2.COLOR_BGR2RGB)
image = np.float32(image)
image = cv2.resize(image,(340,256))
if test_crop == 'center':
image_ = DataAugmentation.center_crop(image,224,224)
if _preprocess_name == 'pytorch':
image_ = normalize(image_)
elif _preprocess_name == 'tf':
image_ = tf_preprocess(image_)
image_flip = np.fliplr(image_)
total_rgb_file.append(image_)
total_rgb_file.append(image_flip)
else:
for i in range(5):
image_ = DataAugmentation.random_Crop(image,1,i)
if _preprocess_name == 'pytorch':
image_ = normalize(image_)
elif _preprocess_name == 'tf':
image_ = tf_preprocess(image_)
image_flip = np.fliplr(image_)
total_rgb_file.append(image_)
total_rgb_file.append(image_flip)
if label is not None:
one_hot_label = np.zeros (51, dtype=np.float32)
one_hot_label[label] = 1
return total_rgb_file, one_hot_label
return total_rgb_file
@staticmethod
def _py_func_flow_test_vp(flow_path, label):
f_upath , f_vpath = flow_path
flow_u_path = f_upath.decode ()
flow_v_path = f_vpath.decode ()
flow_file = os.listdir (flow_u_path)
flow_file = sorted(flow_file)
_batch_size = 25
if len(flow_file) - _new_length < _batch_size:
index_list = np.arange(0,len(flow_file)- _new_length)
index_list = np.concatenate([index_list]*(_batch_size//(len(flow_file)- _new_length) + 1),axis=0)[:_batch_size]
else:
index_list = np.arange(0,len(flow_file)- _new_length,(len(flow_file)- _new_length)//_batch_size)[:_batch_size]
total_img_list = []
for index in index_list:
img_list = []
for i in range(index,index + _new_length):
img_u_path = os.path.join(flow_u_path,flow_file[i])
img_v_path = os.path.join(flow_v_path,flow_file[i])
img_u = cv2.imread(img_u_path,0)
img_v = cv2.imread(img_v_path,0)
# if img_u is not None and img_v is not None:
img = np.stack([img_u,img_v],axis=-1)
img_list.append(img)
img = np.concatenate(img_list,axis=-1)
img = cv2.resize(img,(340,256))
if test_crop == 'center':
image = DataAugmentation.center_crop(img,224,224)
image = np.float32(image)
if _preprocess_name == 'pytorch':
image = (image / 255 - 0.5) / 0.226
elif _preprocess_name == 'tf':
image = tf_preprocess(image)
image_flip = np.fliplr(image)
total_img_list.append(image)
total_img_list.append(image_flip)
else:
for j in range(5):
image = DataAugmentation.random_Crop(img,1,j)
image = np.float32(image)
if _preprocess_name == 'pytorch':
image = (image / 255 - 0.5) / 0.226
elif _preprocess_name == 'tf':
image = tf_preprocess(image)
image_flip = np.fliplr(image)
total_img_list.append(image)
total_img_list.append(image_flip)
if label is not None:
one_hot_label = np.zeros (51, dtype=np.float32)
one_hot_label[label] = 1
return total_img_list, one_hot_label
return total_img_list
@staticmethod
def _py_func_test_vp(rgb_path, flow_path, label):
rgb_file = hmdb_dataset._py_func_rgb_test_vp (rgb_path,None)
flow_file = hmdb_dataset._py_func_flow_test_vp (flow_path,None)
one_hot_label = np.zeros (51, dtype=np.float32)
one_hot_label[label] = 1
return rgb_file, flow_file, one_hot_label
def normalize(img,mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225]):
img = img/255
img_channel = img.shape[-1]
mean = mean * (img_channel // len(mean))
std = std * (img_channel // len(std))
for i in range(img_channel):
img[...,i] = (img[...,i] - mean[i]) / std[i]
return img
def tf_preprocess(img):
img = img/255
img = (img - 0.5) * 2
return img
def subtract_mean(img,is_rgb=True):
if is_rgb:
mean = [123.68,116.78,103.94]
for i in range(3):
img[...,i] = img[...,i] - mean[i]
else:
img -= 114.8
return img
if __name__ == '__main__':
from tensorflow.contrib.slim.nets import resnet_v1
import time
import tensorflow as tf
tf.enable_eager_execution()
m_d = hmdb_dataset (split_number=0, is_training_split=True,
batch_size=1, epoch=10,
frame_counts=25, eval_type='flow',
image_size=224,
prefetch_buffer_size=1).dataset ()
iter = m_d.make_one_shot_iterator()
for i in range(20):
t = time.time()
g = iter.next()
# r = np.squeeze(r)
end_t = time.time() - t
print(g[0].shape,g[1].shape,end_t)