forked from PINTO0309/TPU-MobilenetSSD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMobileNet-SSD-TPU-async.py
214 lines (171 loc) · 6.3 KB
/
MobileNet-SSD-TPU-async.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import argparse
import platform
import numpy as np
import cv2
import time
from PIL import Image
from time import sleep
import multiprocessing as mp
from edgetpu.detection.engine import DetectionEngine
from edgetpu.basic import edgetpu_utils
lastresults = None
processes = []
frameBuffer = None
results = None
fps = ""
detectfps = ""
framecount = 0
detectframecount = 0
time1 = 0
time2 = 0
box_color = (255, 128, 0)
box_thickness = 1
label_background_color = (125, 175, 75)
label_text_color = (255, 255, 255)
percentage = 0.0
# Function to read labels from text files.
def ReadLabelFile(file_path):
with open(file_path, 'r') as f:
lines = f.readlines()
ret = {}
for line in lines:
pair = line.strip().split(maxsplit=1)
ret[int(pair[0])] = pair[1].strip()
return ret
def camThread(label, results, frameBuffer, camera_width, camera_height, vidfps, usbcamno):
global fps
global detectfps
global framecount
global detectframecount
global time1
global time2
global lastresults
global cam
global window_name
cam = cv2.VideoCapture(usbcamno)
cam.set(cv2.CAP_PROP_FPS, vidfps)
cam.set(cv2.CAP_PROP_FRAME_WIDTH, camera_width)
cam.set(cv2.CAP_PROP_FRAME_HEIGHT, camera_height)
window_name = "USB Camera"
cv2.namedWindow(window_name, cv2.WINDOW_AUTOSIZE)
while True:
t1 = time.perf_counter()
ret, color_image = cam.read()
if not ret:
continue
if frameBuffer.full():
frameBuffer.get()
frames = color_image
frameBuffer.put(color_image.copy())
res = None
if not results.empty():
res = results.get(False)
detectframecount += 1
imdraw = overlay_on_image(frames, res, label, camera_width, camera_height)
lastresults = res
else:
imdraw = overlay_on_image(frames, lastresults, label, camera_width, camera_height)
cv2.imshow('USB Camera', imdraw)
if cv2.waitKey(1)&0xFF == ord('q'):
break
# FPS calculation
framecount += 1
if framecount >= 15:
fps = "(Playback) {:.1f} FPS".format(time1/15)
detectfps = "(Detection) {:.1f} FPS".format(detectframecount/time2)
framecount = 0
detectframecount = 0
time1 = 0
time2 = 0
t2 = time.perf_counter()
elapsedTime = t2-t1
time1 += 1/elapsedTime
time2 += elapsedTime
def inferencer(results, frameBuffer, model, camera_width, camera_height):
engine = None
# Acquisition of TPU list without model assignment
devices = edgetpu_utils.ListEdgeTpuPaths(edgetpu_utils.EDGE_TPU_STATE_UNASSIGNED)
devopen = False
for device in devices:
try:
engine = DetectionEngine(model, device)
devopen = True
break
except:
continue
if devopen == False:
print("TPU Devices open Error!!!")
sys.exit(1)
print("Loaded Graphs!!! ")
while True:
if frameBuffer.empty():
continue
# Run inference.
color_image = frameBuffer.get()
prepimg = color_image[:, :, ::-1].copy()
prepimg = Image.fromarray(prepimg)
tinf = time.perf_counter()
ans = engine.DetectWithImage(prepimg, threshold=0.5, keep_aspect_ratio=True, relative_coord=False, top_k=10)
print(time.perf_counter() - tinf, "sec")
results.put(ans)
def overlay_on_image(frames, object_infos, label, camera_width, camera_height):
color_image = frames
if isinstance(object_infos, type(None)):
return color_image
img_cp = color_image.copy()
for obj in object_infos:
box = obj.bounding_box.flatten().tolist()
box_left = int(box[0])
box_top = int(box[1])
box_right = int(box[2])
box_bottom = int(box[3])
cv2.rectangle(img_cp, (box_left, box_top), (box_right, box_bottom), box_color, box_thickness)
percentage = int(obj.score * 100)
label_text = label[obj.label_id] + " (" + str(percentage) + "%)"
label_size = cv2.getTextSize(label_text, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)[0]
label_left = box_left
label_top = box_top - label_size[1]
if (label_top < 1):
label_top = 1
label_right = label_left + label_size[0]
label_bottom = label_top + label_size[1]
cv2.rectangle(img_cp, (label_left - 1, label_top - 1), (label_right + 1, label_bottom + 1), label_background_color, -1)
cv2.putText(img_cp, label_text, (label_left, label_bottom), cv2.FONT_HERSHEY_SIMPLEX, 0.5, label_text_color, 1)
cv2.putText(img_cp, fps, (camera_width-170,15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (38,0,255), 1, cv2.LINE_AA)
cv2.putText(img_cp, detectfps, (camera_width-170,30), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (38,0,255), 1, cv2.LINE_AA)
return img_cp
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--model", default="mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite", help="Path of the detection model.")
parser.add_argument("--label", default="coco_labels.txt", help="Path of the labels file.")
parser.add_argument("--usbcamno", type=int, default=0, help="USB Camera number.")
args = parser.parse_args()
model = args.model
label = ReadLabelFile(args.label)
usbcamno = args.usbcamno
camera_width = 320
camera_height = 240
vidfps = 150
try:
mp.set_start_method('forkserver')
frameBuffer = mp.Queue(10)
results = mp.Queue()
# Start streaming
p = mp.Process(target=camThread,
args=(label, results, frameBuffer, camera_width, camera_height, vidfps, usbcamno),
daemon=True)
p.start()
processes.append(p)
# Activation of inferencer
devices = edgetpu_utils.ListEdgeTpuPaths(edgetpu_utils.EDGE_TPU_STATE_UNASSIGNED)
for devnum in range(len(devices)):
p = mp.Process(target=inferencer,
args=(results, frameBuffer, model, camera_width, camera_height),
daemon=True)
p.start()
processes.append(p)
while True:
sleep(1)
finally:
for p in range(len(processes)):
processes[p].terminate()