-
Notifications
You must be signed in to change notification settings - Fork 1
/
server.py
68 lines (49 loc) · 1.51 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
from flask import Flask, render_template, jsonify, request
import random
import json
import torch
from chatbot.nltk_utils import bag_of_words, tokenize
from chatbot.model import NeuralNet
app = Flask(__name__)
try:
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
with open('chatbot/intents.json', 'r') as f:
intents = json.load(f)
FILE = "chatbot/data.pth"
data = torch.load(FILE)
input_size = data["input_size"]
hidden_size = data["hidden_size"]
output_size = data["output_size"]
all_words = data["all_words"]
tags = data["tags"]
model_state = data["model_state"]
model = NeuralNet(input_size, hidden_size, output_size).to(device)
model.load_state_dict(model_state)
model.eval()
except Exception as e:
print(e)
@app.route('/')
def home():
return render_template('index.html')
@app.route('/chatbot', methods=["POST"])
def chatbot_msg():
if request.method == "POST":
user_data = request.json
sentence = user_data['msg']
sentence = tokenize(sentence)
X = bag_of_words(sentence, all_words)
X = X.reshape(1, X.shape[0])
X = torch.from_numpy(X)
output = model(X)
_, predicted = torch.max(output, dim=1)
tag = tags[predicted.item()]
probs = torch.softmax(output, dim=1)
prob = probs[0][predicted.item()]
if prob.item() > 0.75:
for intent in intents["intents"]:
if tag == intent["tag"]:
return jsonify(msg=random.choice(intent['responses']))
else:
return jsonify(msg="I do not understand...")
if __name__ == '__main__':
app.run(port=5000, debug=True)