-
Notifications
You must be signed in to change notification settings - Fork 0
/
examen
55 lines (44 loc) · 1.33 KB
/
examen
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import cv2
import numpy as np
#(b,g,r)
def analiza(pixel):
print (pixel)
b,g,r = pixel[0],pixel[1],pixel[2]
b = b/1.6
if ( (b >= g) and (b>=r) ):
return True
else:
return False
pass
def main():
w = 160
h = 120
cap = cv2.VideoCapture('marcha.mpg')
if cap.isOpened():
ret, frame = cap.read()
else:
ret = False
out = cv2.VideoWriter('tar.mpg',-1,1, (240,240))
while ret:
ret, frame = cap.read()
frame = cv2.resize(frame, (240, 240), interpolation = cv2.INTER_LINEAR)
#(channel_b, channel_g, channel_r) = cv2.split(frame)
#frame = channel_r
frame2 = frame
#print (frame)
for y in range(len(frame)):
for x in range(len(frame[y])):
if (analiza(frame[y][x]) and (x>40) and (y>40) and (x<(len(frame[0])-10) ) ):
cv2.circle(frame,(x,y), 8, (0,0,255), -1)
#ret,thresh1 = cv2.threshold(frame,117,255,cv2.THRESH_BINARY)
#output1 = thresh1.reshape((frame.shape))
cv2.imshow("Original", frame)
#cv2.imshow("Quantized", output1)
out.write(frame)
if cv2.waitKey(1) == 27: # exit on ESC
break
cv2.destroyAllWindows()
cap.release()
#if __name__ == "__main__":
main()
#print (analiza((12,4,3)))