forked from jayg996/BTC-ISMIR19
-
Notifications
You must be signed in to change notification settings - Fork 0
/
crf_model.py
152 lines (119 loc) · 5.49 KB
/
crf_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import torch
import torch.nn as nn
class CRF(nn.Module):
"""
Implements Conditional Random Fields that can be trained via
backpropagation.
"""
def __init__(self, num_tags):
super(CRF, self).__init__()
self.num_tags = num_tags
self.transitions = nn.Parameter(torch.Tensor(num_tags, num_tags))
self.start_transitions = nn.Parameter(torch.randn(num_tags))
self.stop_transitions = nn.Parameter(torch.randn(num_tags))
nn.init.xavier_normal_(self.transitions)
def forward(self, feats):
# Shape checks
if len(feats.shape) != 3:
raise ValueError("feats must be 3-d got {}-d".format(feats.shape))
return self._viterbi(feats)
def loss(self, feats, tags):
"""
Computes negative log likelihood between features and tags.
Essentially difference between individual sequence scores and
sum of all possible sequence scores (partition function)
Parameters:
feats: Input features [batch size, sequence length, number of tags]
tags: Target tag indices [batch size, sequence length]. Should be between
0 and num_tags
Returns:
Negative log likelihood [a scalar]
"""
# Shape checks
if len(feats.shape) != 3:
raise ValueError("feats must be 3-d got {}-d".format(feats.shape))
if len(tags.shape) != 2:
raise ValueError('tags must be 2-d but got {}-d'.format(tags.shape))
if feats.shape[:2] != tags.shape:
raise ValueError('First two dimensions of feats and tags must match')
sequence_score = self._sequence_score(feats, tags)
partition_function = self._partition_function(feats)
log_probability = sequence_score - partition_function
# -ve of l()
# Average across batch
return -log_probability.mean()
def _sequence_score(self, feats, tags):
"""
Parameters:
feats: Input features [batch size, sequence length, number of tags]
tags: Target tag indices [batch size, sequence length]. Should be between
0 and num_tags
Returns: Sequence score of shape [batch size]
"""
batch_size = feats.shape[0]
# Compute feature scores
feat_score = feats.gather(2, tags.unsqueeze(-1)).squeeze(-1).sum(dim=-1)
# Compute transition scores
# Unfold to get [from, to] tag index pairs
tags_pairs = tags.unfold(1, 2, 1)
# Use advanced indexing to pull out required transition scores
indices = tags_pairs.permute(2, 0, 1).chunk(2)
trans_score = self.transitions[indices].squeeze(0).sum(dim=-1)
# Compute start and stop scores
start_score = self.start_transitions[tags[:, 0]]
stop_score = self.stop_transitions[tags[:, -1]]
return feat_score + start_score + trans_score + stop_score
def _partition_function(self, feats):
"""
Computes the partitition function for CRF using the forward algorithm.
Basically calculate scores for all possible tag sequences for
the given feature vector sequence
Parameters:
feats: Input features [batch size, sequence length, number of tags]
Returns:
Total scores of shape [batch size]
"""
_, seq_size, num_tags = feats.shape
if self.num_tags != num_tags:
raise ValueError('num_tags should be {} but got {}'.format(self.num_tags, num_tags))
a = feats[:, 0] + self.start_transitions.unsqueeze(0) # [batch_size, num_tags]
transitions = self.transitions.unsqueeze(0) # [1, num_tags, num_tags] from -> to
for i in range(1, seq_size):
feat = feats[:, i].unsqueeze(1) # [batch_size, 1, num_tags]
a = self._log_sum_exp(a.unsqueeze(-1) + transitions + feat, 1) # [batch_size, num_tags]
return self._log_sum_exp(a + self.stop_transitions.unsqueeze(0), 1) # [batch_size]
def _viterbi(self, feats):
"""
Uses Viterbi algorithm to predict the best sequence
Parameters:
feats: Input features [batch size, sequence length, number of tags]
Returns: Best tag sequence [batch size, sequence length]
"""
_, seq_size, num_tags = feats.shape
if self.num_tags != num_tags:
raise ValueError('num_tags should be {} but got {}'.format(self.num_tags, num_tags))
v = feats[:, 0] + self.start_transitions.unsqueeze(0) # [batch_size, num_tags]
transitions = self.transitions.unsqueeze(0) # [1, num_tags, num_tags] from -> to
paths = []
for i in range(1, seq_size):
feat = feats[:, i] # [batch_size, num_tags]
v, idx = (v.unsqueeze(-1) + transitions).max(1) # [batch_size, num_tags], [batch_size, num_tags]
paths.append(idx)
v = (v + feat) # [batch_size, num_tags]
v, tag = (v + self.stop_transitions.unsqueeze(0)).max(1, True)
# Backtrack
tags = [tag]
for idx in reversed(paths):
tag = idx.gather(1, tag)
tags.append(tag)
tags.reverse()
return torch.cat(tags, 1)
def _log_sum_exp(self, logits, dim):
"""
Computes log-sum-exp in a stable way
"""
max_val, _ = logits.max(dim)
return max_val + (logits - max_val.unsqueeze(dim)).exp().sum(dim).log()