-
Notifications
You must be signed in to change notification settings - Fork 11
/
ai-consulting-process.php
255 lines (236 loc) · 14.1 KB
/
ai-consulting-process.php
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8">
<meta content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=0" name="viewport" />
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1" />
<!-- Favicons -->
<link rel="apple-touch-icon" href="./assets/img/kit/free/apple-icon.png">
<link rel="icon" href="./img/favicon.png">
<title>AI Consulting Process</title>
<link rel="stylesheet" href="css/bootstrap.min.css">
<link rel="stylesheet" href="css/style.css">
<link rel="stylesheet" href="css/responsive.css">
<link rel="stylesheet" href="css/flickity.css">
<link rel="stylesheet" href="css/animate.css">
<link
href="https://fonts.googleapis.com/css?family=Raleway:100,100i,200,200i,300,300i,400,400i,500,500i,600,600i,700,700i,800,800i,900,900i"
rel="stylesheet">
<link href="https://fonts.googleapis.com/css?family=Roboto+Condensed:300i,400,400i,700,700i" rel="stylesheet">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.6.3/css/all.css"
integrity="sha384-UHRtZLI+pbxtHCWp1t77Bi1L4ZtiqrqD80Kn4Z8NTSRyMA2Fd33n5dQ8lWUE00s/" crossorigin="anonymous">
<link href="https://unpkg.com/ionicons@4.5.0/dist/css/ionicons.min.css" rel="stylesheet">
<!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv.js"></script>
<![endif]-->
</head>
<body>
<!------------------------ main menu start ---------------------->
<?php
include 'header.php';
?>
<!------------------------ main menu end ------------------------>
<!------------------------ CONSULTING start --------------------->
<div class="section-padding mt-5" id="downClick">
<div class="container">
<div class="text-center">
<div class="title">
<div class="text-big60">Data Extraction and <br> Integration</div>
</div>
<div class="short-line mx-auto bg-red"></div>
<p class=" fs-16">
Our team brings extensive know-how for various data sources available in a factory.
They can be Historians, Energy Meters, Lab Quality Systems, MES, ERP, PLCs, SpreadSheets, Logs, SQL, PCs, Batch Reports, MTConnect, OPC-UA.
Our Data Extraction Consultancy is categorized mainly into five parts.
</p>
</div>
<br>
<div class="row mb-4 p-0 no-gutters align-items-center">
<div class="col-lg order-2 order-lg-1">
<div class="p-4" style="padding: 0.6rem !important;">
<ul class="ul-list-bullet">
<li>
Control Systems Data Extraction: Our experts support you in extracting the data from various
hardware controller systems such as PLC, SCADA, DCS, etc.
</li>
<li>
Integration via Bus Systems: Our experts bring the know-how for various bus systems such as J-bus,
Mod-bus, ProfiBus, EthNet, EthCat, CAN bus, etc.
</li>
<li>
IT Systems: Integration with IT systems is done either using REST/SOAP APIs or
JDBC/ODBC connectors
are utilized. Some of the systems we have experience in are SAP ERP, PP, WM, MES,
SPS Control, APC,
etc.
</li>
<li>
Data Storage Systems Integration: We support youwith various DBMS technologies such as MySQL,
Postgres, NoSQL databases like MongoDB, InfluxDB, ElasticSearch, Hadoop, etc. Further, we support you with setting up data lakes and data warehouses using various DBMS technologies.
</li>
<li>
E. Communication Protocols Integration: This section includes the integration of the
data stream via
various data communication protocols such as TCP/IP, FTP, OPC-UA, MQTT, MTConnect,
PI AI
systems, etc.
</li>
</ul>
</div>
</div>
<div class="col-lg order-1 order-lg-2">
<div class="AmimgBox">
<img src="img/Achieve-more.jpg" class="img-fluid">
</div>
</div>
</div>
</div>
<!------------------------ CONSULTING end --------------------->
<!------------------------ CONSULTING start --------------------->
<div class="section-padding">
<div class="container">
<div class="text-center">
<div class="title">
<div class="text-big60">Data Preparation</div>
</div>
<div class="short-line mx-auto bg-red"></div>
<p class="text-p">
The data which is collected from different sources may have dirty data,
which is why the cleaning of data should be done before the data is loaded.
The problem with polluted data is that there is no fixed way of dealing with it.
The polluted values affect our performance and predictive capacity.
Errors in the data have the potential to change all our statistical parameters.
The way they interact with outliers once again affect our statistics.
Conclusions can thus be misleading.
</p>
</div>
<br>
<div class="row mb-4 align-items-center">
<div class="col-lg">
<div class="AmimgBox">
<img src="img/Data-preparation.jpg" class="img-fluid">
</div>
</div>
<div class="col-lg">
<div class="p-lg-4 pt-4 text-lg-left">
<ul class="ul-list-bullet">
<li>There can be various causes of the bad and dirty data:</li>
<li>Bug in PLC due to power failures which gives rise to missing data.</li>
<li>Wrong configuration of machine controllers gives rise to out-of-permissible values
for a
sensor.</li>
<li>Network issues like 3G, 4G, Wi-Fi etc. give rise to incomplete data.</li>
<li>Wrong queries written for extracting the data from databases.</li>
<li>Bugs arising while merging the data coming from multiple data sources.</li>
</ul>
</div>
</div>
</div>
<br>
<div class="centerTitle">
<p class="text-p">
Many times, work order or product quality results are being captured manually, whereas automated
systems
are in place for sensors data, so combining the data creates logs of bad data
</p>
<p class="text-p">
For handling bad data quality and faulty data, we leverage our powerful tool kit.
It includes pre-written data-cleanup algorithmic modules such as sanity handling, missing handling,
multicollinearity analysis, mahalanobis distance, data distribution check, infer best bucket etc.
Once the data have been cleaned, it will produce precise results when the ML/DL algorithms are applied. Hence consistent data is essential for reliable decision making. We at Tvarit sanitise the data as surgically as possible to obtain the best possible solution.
</p>
</div>
</div>
</div>
<!------------------------ CONSULTING end --------------------->
<div class="section-padding">
<div class="container">
<div class="centerTitle">
<div class="text-big60">Data Labelling</div>
</div>
<div class="short-line mx-auto bg-red"></div>
<div class="text-p centerTitle">
Tvarit provides Managed Data Labelling teams.
Enrich your massive amounts of data in a transparent and agile approach with high levels of
accuracy, consistency and speed.
We provide labelling to all kinds of data such as image, text, video, sensor and time-series data.
</div>
</div>
</div>
<div class="section-padding">
<div class="container">
<div class="text-center">
<div class="title">
<div class="text-big60">Data Harmonization</div>
</div>
<div class="short-line mx-auto bg-red"></div>
<p class="text-p">
The wave of Digitization and Data collection during the past years has forced every single company to
focus on Data Collection.
The biggest pain point of manufacturing companies as of today is to figure out which data is most fruitful.
Further big data is being produced from Machinery as well, as thousands of sensors in your plant collect the data at the rate of every 1 second, sometimes even 1 millisecond. Therefore, valueable insight rather lie in “The Fruitful Data”, not in “Big Data”.
</p>
<p class="text-p fs-12">
Intelligent Transformations such as FFT, Wavelet, Approximate Entropy etc can be applied on high-frequency data.
For example, you are capturing Vibration data from a CNC Machine Spindle at the rate of 2KHZ which
translates to a couple of GBs within a day.
Applying “slot aggregation” becomes much easier as you can easily see that ~99% of times your CNC
Machine Spindle is behaving normally and this “normal” data can be safely aggregated to the higher
bucket (say 1 data point every 1 min), assuming no information loss.
Now, the rest of the ~1% of the time, your CNC Machine Spindle is capturing Anomalies (during worn-out conditions or tool breaking conditions)
which should not be aggregated at all, as that is “the Fruitful Data” and dropping the same will lead to information loss.
This will allow this Data Compression from a sveral GBs to MBs of data without compromising accuracy.
</p>
</div>
<br>
</div>
</div>
<div class="section-padding">
<div class="container">
<div class="text-center">
<div class="text-center title">
<div class="text-big60 mb-0"><span class="red">AI</span> Powered data recommendation system</div>
<!-- <p class="text-first red">recommendation system</p> -->
<div class="short-line mx-auto bg-red"></div>
</div>
<p class="text-p">
Tvarit Experts have prior experience in process engineering plants where the calculation of precise
set points of various parameters is very important to avoid any future anomalies.
Our data scientists have built a ML/DL assisted recommendation engine to achieve that.
Further, the Confidence Levels of these AI predicted setpoints are given while recommending
users (shop floor engineers) with action items. Limits of input tweakable parameters are taken
into consideration while creating these recommendations.
Hence domain knowledge is incorporated into the ML/DL model and provision to users with sensible action items is ensured.
</p>
</div>
</div>
</div>
<br>
<!------------------------Countdown start --------------------->
<?php
include 'change_we_brought.php'
?>
<!------------------------Countdown end --------------------->
<!------------------------Automated slide start --------------------->
<?php
include 'change_we_bring.php'
?>
<!------------------------Automated slide end --------------------->
<!------------------------footer start --------------------->
<?php
include 'footer.php'
?>
<!------------------------footer end --------------------->
<!-- script start -->
<script src="js/jquery.min.js"></script>
<script src="js/popper.min.js"></script>
<script src="js/bootstrap.min.js"></script>
<script src="js/jquery.easing.min.js"></script>
<script src="js/SmoothScroll.js"></script>
<script src="js/flickity.pkgd.min.js"></script>
<script src="js/readmore.js"></script>
<script src="js/counting.js"></script>
<script src="js/script.js"></script>
<script src="js/parallax.js"></script>
</body>
</html>