forked from hashicorp/raft
-
Notifications
You must be signed in to change notification settings - Fork 0
/
raft.go
1874 lines (1639 loc) · 55.1 KB
/
raft.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
package raft
import (
"bytes"
"container/list"
"fmt"
"io"
"io/ioutil"
"sync/atomic"
"time"
"github.com/hashicorp/go-hclog"
"github.com/armon/go-metrics"
)
const (
minCheckInterval = 10 * time.Millisecond
oldestLogGaugeInterval = 10 * time.Second
)
var (
keyCurrentTerm = []byte("CurrentTerm")
keyLastVoteTerm = []byte("LastVoteTerm")
keyLastVoteCand = []byte("LastVoteCand")
)
// getRPCHeader returns an initialized RPCHeader struct for the given
// Raft instance. This structure is sent along with RPC requests and
// responses.
func (r *Raft) getRPCHeader() RPCHeader {
return RPCHeader{
ProtocolVersion: r.config().ProtocolVersion,
}
}
// checkRPCHeader houses logic about whether this instance of Raft can process
// the given RPC message.
func (r *Raft) checkRPCHeader(rpc RPC) error {
// Get the header off the RPC message.
wh, ok := rpc.Command.(WithRPCHeader)
if !ok {
return fmt.Errorf("RPC does not have a header")
}
header := wh.GetRPCHeader()
// First check is to just make sure the code can understand the
// protocol at all.
if header.ProtocolVersion < ProtocolVersionMin ||
header.ProtocolVersion > ProtocolVersionMax {
return ErrUnsupportedProtocol
}
// Second check is whether we should support this message, given the
// current protocol we are configured to run. This will drop support
// for protocol version 0 starting at protocol version 2, which is
// currently what we want, and in general support one version back. We
// may need to revisit this policy depending on how future protocol
// changes evolve.
if header.ProtocolVersion < r.config().ProtocolVersion-1 {
return ErrUnsupportedProtocol
}
return nil
}
// getSnapshotVersion returns the snapshot version that should be used when
// creating snapshots, given the protocol version in use.
func getSnapshotVersion(protocolVersion ProtocolVersion) SnapshotVersion {
// Right now we only have two versions and they are backwards compatible
// so we don't need to look at the protocol version.
return 1
}
// commitTuple is used to send an index that was committed,
// with an optional associated future that should be invoked.
type commitTuple struct {
log *Log
future *logFuture
}
// leaderState is state that is used while we are a leader.
type leaderState struct {
leadershipTransferInProgress int32 // indicates that a leadership transfer is in progress.
commitCh chan struct{}
commitment *commitment
inflight *list.List // list of logFuture in log index order
replState map[ServerID]*followerReplication
notify map[*verifyFuture]struct{}
stepDown chan struct{}
}
// setLeader is used to modify the current leader of the cluster
func (r *Raft) setLeader(leader ServerAddress) {
r.leaderLock.Lock()
oldLeader := r.leader
r.leader = leader
r.leaderLock.Unlock()
if oldLeader != leader {
r.observe(LeaderObservation{Leader: leader})
}
}
// requestConfigChange is a helper for the above functions that make
// configuration change requests. 'req' describes the change. For timeout,
// see AddVoter.
func (r *Raft) requestConfigChange(req configurationChangeRequest, timeout time.Duration) IndexFuture {
var timer <-chan time.Time
if timeout > 0 {
timer = time.After(timeout)
}
future := &configurationChangeFuture{
req: req,
}
future.init()
select {
case <-timer:
return errorFuture{ErrEnqueueTimeout}
case r.configurationChangeCh <- future:
return future
case <-r.shutdownCh:
return errorFuture{ErrRaftShutdown}
}
}
// run is a long running goroutine that runs the Raft FSM.
func (r *Raft) run() {
for {
// Check if we are doing a shutdown
select {
case <-r.shutdownCh:
// Clear the leader to prevent forwarding
r.setLeader("")
return
default:
}
// Enter into a sub-FSM
switch r.getState() {
case Follower:
r.runFollower()
case Candidate:
r.runCandidate()
case Leader:
r.runLeader()
}
}
}
// runFollower runs the FSM for a follower.
func (r *Raft) runFollower() {
didWarn := false
r.logger.Info("entering follower state", "follower", r, "leader", r.Leader())
metrics.IncrCounter([]string{"raft", "state", "follower"}, 1)
heartbeatTimer := randomTimeout(r.config().HeartbeatTimeout)
for r.getState() == Follower {
select {
case rpc := <-r.rpcCh:
r.processRPC(rpc)
case c := <-r.configurationChangeCh:
// Reject any operations since we are not the leader
c.respond(ErrNotLeader)
case a := <-r.applyCh:
// Reject any operations since we are not the leader
a.respond(ErrNotLeader)
case v := <-r.verifyCh:
// Reject any operations since we are not the leader
v.respond(ErrNotLeader)
case r := <-r.userRestoreCh:
// Reject any restores since we are not the leader
r.respond(ErrNotLeader)
case r := <-r.leadershipTransferCh:
// Reject any operations since we are not the leader
r.respond(ErrNotLeader)
case c := <-r.configurationsCh:
c.configurations = r.configurations.Clone()
c.respond(nil)
case b := <-r.bootstrapCh:
b.respond(r.liveBootstrap(b.configuration))
case <-heartbeatTimer:
// Restart the heartbeat timer
hbTimeout := r.config().HeartbeatTimeout
heartbeatTimer = randomTimeout(hbTimeout)
// Check if we have had a successful contact
lastContact := r.LastContact()
if time.Now().Sub(lastContact) < hbTimeout {
continue
}
// Heartbeat failed! Transition to the candidate state
lastLeader := r.Leader()
r.setLeader("")
if r.configurations.latestIndex == 0 {
if !didWarn {
r.logger.Warn("no known peers, aborting election")
didWarn = true
}
} else if r.configurations.latestIndex == r.configurations.committedIndex &&
!hasVote(r.configurations.latest, r.localID) {
if !didWarn {
r.logger.Warn("not part of stable configuration, aborting election")
didWarn = true
}
} else {
metrics.IncrCounter([]string{"raft", "transition", "heartbeat_timeout"}, 1)
if hasVote(r.configurations.latest, r.localID) {
r.logger.Warn("heartbeat timeout reached, starting election", "last-leader", lastLeader)
r.setState(Candidate)
return
} else if !didWarn {
r.logger.Warn("heartbeat timeout reached, not part of a stable configuration or a non-voter, not triggering a leader election")
didWarn = true
}
}
case <-r.shutdownCh:
return
}
}
}
// liveBootstrap attempts to seed an initial configuration for the cluster. See
// the Raft object's member BootstrapCluster for more details. This must only be
// called on the main thread, and only makes sense in the follower state.
func (r *Raft) liveBootstrap(configuration Configuration) error {
// Use the pre-init API to make the static updates.
cfg := r.config()
err := BootstrapCluster(&cfg, r.logs, r.stable, r.snapshots,
r.trans, configuration)
if err != nil {
return err
}
// Make the configuration live.
var entry Log
if err := r.logs.GetLog(1, &entry); err != nil {
panic(err)
}
r.setCurrentTerm(1)
r.setLastLog(entry.Index, entry.Term)
return r.processConfigurationLogEntry(&entry)
}
// runCandidate runs the FSM for a candidate.
func (r *Raft) runCandidate() {
r.logger.Info("entering candidate state", "node", r, "term", r.getCurrentTerm()+1)
metrics.IncrCounter([]string{"raft", "state", "candidate"}, 1)
// Start vote for us, and set a timeout
voteCh := r.electSelf()
// Make sure the leadership transfer flag is reset after each run. Having this
// flag will set the field LeadershipTransfer in a RequestVoteRequst to true,
// which will make other servers vote even though they have a leader already.
// It is important to reset that flag, because this priviledge could be abused
// otherwise.
defer func() { r.candidateFromLeadershipTransfer = false }()
electionTimer := randomTimeout(r.config().ElectionTimeout)
// Tally the votes, need a simple majority
grantedVotes := 0
votesNeeded := r.quorumSize()
r.logger.Debug("votes", "needed", votesNeeded)
for r.getState() == Candidate {
select {
case rpc := <-r.rpcCh:
r.processRPC(rpc)
case vote := <-voteCh:
// Check if the term is greater than ours, bail
if vote.Term > r.getCurrentTerm() {
r.logger.Debug("newer term discovered, fallback to follower")
r.setState(Follower)
r.setCurrentTerm(vote.Term)
return
}
// Check if the vote is granted
if vote.Granted {
grantedVotes++
r.logger.Debug("vote granted", "from", vote.voterID, "term", vote.Term, "tally", grantedVotes)
}
// Check if we've become the leader
if grantedVotes >= votesNeeded {
r.logger.Info("election won", "tally", grantedVotes)
r.setState(Leader)
r.setLeader(r.localAddr)
return
}
case c := <-r.configurationChangeCh:
// Reject any operations since we are not the leader
c.respond(ErrNotLeader)
case a := <-r.applyCh:
// Reject any operations since we are not the leader
a.respond(ErrNotLeader)
case v := <-r.verifyCh:
// Reject any operations since we are not the leader
v.respond(ErrNotLeader)
case r := <-r.userRestoreCh:
// Reject any restores since we are not the leader
r.respond(ErrNotLeader)
case r := <-r.leadershipTransferCh:
// Reject any operations since we are not the leader
r.respond(ErrNotLeader)
case c := <-r.configurationsCh:
c.configurations = r.configurations.Clone()
c.respond(nil)
case b := <-r.bootstrapCh:
b.respond(ErrCantBootstrap)
case <-electionTimer:
// Election failed! Restart the election. We simply return,
// which will kick us back into runCandidate
r.logger.Warn("Election timeout reached, restarting election")
return
case <-r.shutdownCh:
return
}
}
}
func (r *Raft) setLeadershipTransferInProgress(v bool) {
if v {
atomic.StoreInt32(&r.leaderState.leadershipTransferInProgress, 1)
} else {
atomic.StoreInt32(&r.leaderState.leadershipTransferInProgress, 0)
}
}
func (r *Raft) getLeadershipTransferInProgress() bool {
v := atomic.LoadInt32(&r.leaderState.leadershipTransferInProgress)
return v == 1
}
func (r *Raft) setupLeaderState() {
r.leaderState.commitCh = make(chan struct{}, 1)
r.leaderState.commitment = newCommitment(r.leaderState.commitCh,
r.configurations.latest,
r.getLastIndex()+1 /* first index that may be committed in this term */)
r.leaderState.inflight = list.New()
r.leaderState.replState = make(map[ServerID]*followerReplication)
r.leaderState.notify = make(map[*verifyFuture]struct{})
r.leaderState.stepDown = make(chan struct{}, 1)
}
// runLeader runs the FSM for a leader. Do the setup here and drop into
// the leaderLoop for the hot loop.
func (r *Raft) runLeader() {
r.logger.Info("entering leader state", "leader", r)
metrics.IncrCounter([]string{"raft", "state", "leader"}, 1)
// Notify that we are the leader
overrideNotifyBool(r.leaderCh, true)
// Store the notify chan. It's not reloadable so shouldn't change before the
// defer below runs, but this makes sure we always notify the same chan if
// ever for both gaining and loosing leadership.
notify := r.config().NotifyCh
// Push to the notify channel if given
if notify != nil {
select {
case notify <- true:
case <-r.shutdownCh:
}
}
// setup leader state. This is only supposed to be accessed within the
// leaderloop.
r.setupLeaderState()
// Run a background go-routine to emit metrics on log age
stopCh := make(chan struct{})
go emitLogStoreMetrics(r.logs, []string{"raft", "leader"}, oldestLogGaugeInterval, stopCh)
// Cleanup state on step down
defer func() {
close(stopCh)
// Since we were the leader previously, we update our
// last contact time when we step down, so that we are not
// reporting a last contact time from before we were the
// leader. Otherwise, to a client it would seem our data
// is extremely stale.
r.setLastContact()
// Stop replication
for _, p := range r.leaderState.replState {
close(p.stopCh)
}
// Respond to all inflight operations
for e := r.leaderState.inflight.Front(); e != nil; e = e.Next() {
e.Value.(*logFuture).respond(ErrLeadershipLost)
}
// Respond to any pending verify requests
for future := range r.leaderState.notify {
future.respond(ErrLeadershipLost)
}
// Clear all the state
r.leaderState.commitCh = nil
r.leaderState.commitment = nil
r.leaderState.inflight = nil
r.leaderState.replState = nil
r.leaderState.notify = nil
r.leaderState.stepDown = nil
// If we are stepping down for some reason, no known leader.
// We may have stepped down due to an RPC call, which would
// provide the leader, so we cannot always blank this out.
r.leaderLock.Lock()
if r.leader == r.localAddr {
r.leader = ""
}
r.leaderLock.Unlock()
// Notify that we are not the leader
overrideNotifyBool(r.leaderCh, false)
// Push to the notify channel if given
if notify != nil {
select {
case notify <- false:
case <-r.shutdownCh:
// On shutdown, make a best effort but do not block
select {
case notify <- false:
default:
}
}
}
}()
// Start a replication routine for each peer
r.startStopReplication()
// Dispatch a no-op log entry first. This gets this leader up to the latest
// possible commit index, even in the absence of client commands. This used
// to append a configuration entry instead of a noop. However, that permits
// an unbounded number of uncommitted configurations in the log. We now
// maintain that there exists at most one uncommitted configuration entry in
// any log, so we have to do proper no-ops here.
noop := &logFuture{
log: Log{
Type: LogNoop,
},
}
r.dispatchLogs([]*logFuture{noop})
// Sit in the leader loop until we step down
r.leaderLoop()
}
// startStopReplication will set up state and start asynchronous replication to
// new peers, and stop replication to removed peers. Before removing a peer,
// it'll instruct the replication routines to try to replicate to the current
// index. This must only be called from the main thread.
func (r *Raft) startStopReplication() {
inConfig := make(map[ServerID]bool, len(r.configurations.latest.Servers))
lastIdx := r.getLastIndex()
// Start replication goroutines that need starting
for _, server := range r.configurations.latest.Servers {
if server.ID == r.localID {
continue
}
inConfig[server.ID] = true
s, ok := r.leaderState.replState[server.ID]
if !ok {
r.logger.Info("added peer, starting replication", "peer", server.ID)
s = &followerReplication{
peer: server,
commitment: r.leaderState.commitment,
stopCh: make(chan uint64, 1),
triggerCh: make(chan struct{}, 1),
triggerDeferErrorCh: make(chan *deferError, 1),
currentTerm: r.getCurrentTerm(),
nextIndex: lastIdx + 1,
lastContact: time.Now(),
notify: make(map[*verifyFuture]struct{}),
notifyCh: make(chan struct{}, 1),
stepDown: r.leaderState.stepDown,
}
r.leaderState.replState[server.ID] = s
r.goFunc(func() { r.replicate(s) })
asyncNotifyCh(s.triggerCh)
r.observe(PeerObservation{Peer: server, Removed: false})
} else if ok {
s.peerLock.RLock()
peer := s.peer
s.peerLock.RUnlock()
if peer.Address != server.Address {
r.logger.Info("updating peer", "peer", server.ID)
s.peerLock.Lock()
s.peer = server
s.peerLock.Unlock()
}
}
}
// Stop replication goroutines that need stopping
for serverID, repl := range r.leaderState.replState {
if inConfig[serverID] {
continue
}
// Replicate up to lastIdx and stop
r.logger.Info("removed peer, stopping replication", "peer", serverID, "last-index", lastIdx)
repl.stopCh <- lastIdx
close(repl.stopCh)
delete(r.leaderState.replState, serverID)
r.observe(PeerObservation{Peer: repl.peer, Removed: true})
}
// Update peers metric
metrics.SetGauge([]string{"raft", "peers"}, float32(len(r.configurations.latest.Servers)))
}
// configurationChangeChIfStable returns r.configurationChangeCh if it's safe
// to process requests from it, or nil otherwise. This must only be called
// from the main thread.
//
// Note that if the conditions here were to change outside of leaderLoop to take
// this from nil to non-nil, we would need leaderLoop to be kicked.
func (r *Raft) configurationChangeChIfStable() chan *configurationChangeFuture {
// Have to wait until:
// 1. The latest configuration is committed, and
// 2. This leader has committed some entry (the noop) in this term
// https://groups.google.com/forum/#!msg/raft-dev/t4xj6dJTP6E/d2D9LrWRza8J
if r.configurations.latestIndex == r.configurations.committedIndex &&
r.getCommitIndex() >= r.leaderState.commitment.startIndex {
return r.configurationChangeCh
}
return nil
}
// leaderLoop is the hot loop for a leader. It is invoked
// after all the various leader setup is done.
func (r *Raft) leaderLoop() {
// stepDown is used to track if there is an inflight log that
// would cause us to lose leadership (specifically a RemovePeer of
// ourselves). If this is the case, we must not allow any logs to
// be processed in parallel, otherwise we are basing commit on
// only a single peer (ourself) and replicating to an undefined set
// of peers.
stepDown := false
// This is only used for the first lease check, we reload lease below
// based on the current config value.
lease := time.After(r.config().LeaderLeaseTimeout)
for r.getState() == Leader {
select {
case rpc := <-r.rpcCh:
r.processRPC(rpc)
case <-r.leaderState.stepDown:
r.setState(Follower)
case future := <-r.leadershipTransferCh:
if r.getLeadershipTransferInProgress() {
r.logger.Debug(ErrLeadershipTransferInProgress.Error())
future.respond(ErrLeadershipTransferInProgress)
continue
}
r.logger.Debug("starting leadership transfer", "id", future.ID, "address", future.Address)
// When we are leaving leaderLoop, we are no longer
// leader, so we should stop transferring.
leftLeaderLoop := make(chan struct{})
defer func() { close(leftLeaderLoop) }()
stopCh := make(chan struct{})
doneCh := make(chan error, 1)
// This is intentionally being setup outside of the
// leadershipTransfer function. Because the TimeoutNow
// call is blocking and there is no way to abort that
// in case eg the timer expires.
// The leadershipTransfer function is controlled with
// the stopCh and doneCh.
go func() {
select {
case <-time.After(r.config().ElectionTimeout):
close(stopCh)
err := fmt.Errorf("leadership transfer timeout")
r.logger.Debug(err.Error())
future.respond(err)
<-doneCh
case <-leftLeaderLoop:
close(stopCh)
err := fmt.Errorf("lost leadership during transfer (expected)")
r.logger.Debug(err.Error())
future.respond(nil)
<-doneCh
case err := <-doneCh:
if err != nil {
r.logger.Debug(err.Error())
}
future.respond(err)
}
}()
// leaderState.replState is accessed here before
// starting leadership transfer asynchronously because
// leaderState is only supposed to be accessed in the
// leaderloop.
id := future.ID
address := future.Address
if id == nil {
s := r.pickServer()
if s != nil {
id = &s.ID
address = &s.Address
} else {
doneCh <- fmt.Errorf("cannot find peer")
continue
}
}
state, ok := r.leaderState.replState[*id]
if !ok {
doneCh <- fmt.Errorf("cannot find replication state for %v", id)
continue
}
go r.leadershipTransfer(*id, *address, state, stopCh, doneCh)
case <-r.leaderState.commitCh:
// Process the newly committed entries
oldCommitIndex := r.getCommitIndex()
commitIndex := r.leaderState.commitment.getCommitIndex()
r.setCommitIndex(commitIndex)
// New configration has been committed, set it as the committed
// value.
if r.configurations.latestIndex > oldCommitIndex &&
r.configurations.latestIndex <= commitIndex {
r.setCommittedConfiguration(r.configurations.latest, r.configurations.latestIndex)
if !hasVote(r.configurations.committed, r.localID) {
stepDown = true
}
}
start := time.Now()
var groupReady []*list.Element
var groupFutures = make(map[uint64]*logFuture)
var lastIdxInGroup uint64
// Pull all inflight logs that are committed off the queue.
for e := r.leaderState.inflight.Front(); e != nil; e = e.Next() {
commitLog := e.Value.(*logFuture)
idx := commitLog.log.Index
if idx > commitIndex {
// Don't go past the committed index
break
}
// Measure the commit time
metrics.MeasureSince([]string{"raft", "commitTime"}, commitLog.dispatch)
groupReady = append(groupReady, e)
groupFutures[idx] = commitLog
lastIdxInGroup = idx
}
// Process the group
if len(groupReady) != 0 {
r.processLogs(lastIdxInGroup, groupFutures)
for _, e := range groupReady {
r.leaderState.inflight.Remove(e)
}
}
// Measure the time to enqueue batch of logs for FSM to apply
metrics.MeasureSince([]string{"raft", "fsm", "enqueue"}, start)
// Count the number of logs enqueued
metrics.SetGauge([]string{"raft", "commitNumLogs"}, float32(len(groupReady)))
if stepDown {
if r.config().ShutdownOnRemove {
r.logger.Info("removed ourself, shutting down")
r.Shutdown()
} else {
r.logger.Info("removed ourself, transitioning to follower")
r.setState(Follower)
}
}
case v := <-r.verifyCh:
if v.quorumSize == 0 {
// Just dispatched, start the verification
r.verifyLeader(v)
} else if v.votes < v.quorumSize {
// Early return, means there must be a new leader
r.logger.Warn("new leader elected, stepping down")
r.setState(Follower)
delete(r.leaderState.notify, v)
for _, repl := range r.leaderState.replState {
repl.cleanNotify(v)
}
v.respond(ErrNotLeader)
} else {
// Quorum of members agree, we are still leader
delete(r.leaderState.notify, v)
for _, repl := range r.leaderState.replState {
repl.cleanNotify(v)
}
v.respond(nil)
}
case future := <-r.userRestoreCh:
if r.getLeadershipTransferInProgress() {
r.logger.Debug(ErrLeadershipTransferInProgress.Error())
future.respond(ErrLeadershipTransferInProgress)
continue
}
err := r.restoreUserSnapshot(future.meta, future.reader)
future.respond(err)
case future := <-r.configurationsCh:
if r.getLeadershipTransferInProgress() {
r.logger.Debug(ErrLeadershipTransferInProgress.Error())
future.respond(ErrLeadershipTransferInProgress)
continue
}
future.configurations = r.configurations.Clone()
future.respond(nil)
case future := <-r.configurationChangeChIfStable():
if r.getLeadershipTransferInProgress() {
r.logger.Debug(ErrLeadershipTransferInProgress.Error())
future.respond(ErrLeadershipTransferInProgress)
continue
}
r.appendConfigurationEntry(future)
case b := <-r.bootstrapCh:
b.respond(ErrCantBootstrap)
case newLog := <-r.applyCh:
if r.getLeadershipTransferInProgress() {
r.logger.Debug(ErrLeadershipTransferInProgress.Error())
newLog.respond(ErrLeadershipTransferInProgress)
continue
}
// Group commit, gather all the ready commits
ready := []*logFuture{newLog}
GROUP_COMMIT_LOOP:
for i := 0; i < r.config().MaxAppendEntries; i++ {
select {
case newLog := <-r.applyCh:
ready = append(ready, newLog)
default:
break GROUP_COMMIT_LOOP
}
}
// Dispatch the logs
if stepDown {
// we're in the process of stepping down as leader, don't process anything new
for i := range ready {
ready[i].respond(ErrNotLeader)
}
} else {
r.dispatchLogs(ready)
}
case <-lease:
// Check if we've exceeded the lease, potentially stepping down
maxDiff := r.checkLeaderLease()
// Next check interval should adjust for the last node we've
// contacted, without going negative
checkInterval := r.config().LeaderLeaseTimeout - maxDiff
if checkInterval < minCheckInterval {
checkInterval = minCheckInterval
}
// Renew the lease timer
lease = time.After(checkInterval)
case <-r.shutdownCh:
return
}
}
}
// verifyLeader must be called from the main thread for safety.
// Causes the followers to attempt an immediate heartbeat.
func (r *Raft) verifyLeader(v *verifyFuture) {
// Current leader always votes for self
v.votes = 1
// Set the quorum size, hot-path for single node
v.quorumSize = r.quorumSize()
if v.quorumSize == 1 {
v.respond(nil)
return
}
// Track this request
v.notifyCh = r.verifyCh
r.leaderState.notify[v] = struct{}{}
// Trigger immediate heartbeats
for _, repl := range r.leaderState.replState {
repl.notifyLock.Lock()
repl.notify[v] = struct{}{}
repl.notifyLock.Unlock()
asyncNotifyCh(repl.notifyCh)
}
}
// leadershipTransfer is doing the heavy lifting for the leadership transfer.
func (r *Raft) leadershipTransfer(id ServerID, address ServerAddress, repl *followerReplication, stopCh chan struct{}, doneCh chan error) {
// make sure we are not already stopped
select {
case <-stopCh:
doneCh <- nil
return
default:
}
// Step 1: set this field which stops this leader from responding to any client requests.
r.setLeadershipTransferInProgress(true)
defer func() { r.setLeadershipTransferInProgress(false) }()
for atomic.LoadUint64(&repl.nextIndex) <= r.getLastIndex() {
err := &deferError{}
err.init()
repl.triggerDeferErrorCh <- err
select {
case err := <-err.errCh:
if err != nil {
doneCh <- err
return
}
case <-stopCh:
doneCh <- nil
return
}
}
// Step ?: the thesis describes in chap 6.4.1: Using clocks to reduce
// messaging for read-only queries. If this is implemented, the lease
// has to be reset as well, in case leadership is transferred. This
// implementation also has a lease, but it serves another purpose and
// doesn't need to be reset. The lease mechanism in our raft lib, is
// setup in a similar way to the one in the thesis, but in practice
// it's a timer that just tells the leader how often to check
// heartbeats are still coming in.
// Step 3: send TimeoutNow message to target server.
err := r.trans.TimeoutNow(id, address, &TimeoutNowRequest{RPCHeader: r.getRPCHeader()}, &TimeoutNowResponse{})
if err != nil {
err = fmt.Errorf("failed to make TimeoutNow RPC to %v: %v", id, err)
}
doneCh <- err
}
// checkLeaderLease is used to check if we can contact a quorum of nodes
// within the last leader lease interval. If not, we need to step down,
// as we may have lost connectivity. Returns the maximum duration without
// contact. This must only be called from the main thread.
func (r *Raft) checkLeaderLease() time.Duration {
// Track contacted nodes, we can always contact ourself
contacted := 0
// Store lease timeout for this one check invocation as we need to refer to it
// in the loop and would be confusing if it ever becomes reloadable and
// changes between iterations below.
leaseTimeout := r.config().LeaderLeaseTimeout
// Check each follower
var maxDiff time.Duration
now := time.Now()
for _, server := range r.configurations.latest.Servers {
if server.Suffrage == Voter {
if server.ID == r.localID {
contacted++
continue
}
f := r.leaderState.replState[server.ID]
diff := now.Sub(f.LastContact())
if diff <= leaseTimeout {
contacted++
if diff > maxDiff {
maxDiff = diff
}
} else {
// Log at least once at high value, then debug. Otherwise it gets very verbose.
if diff <= 3*leaseTimeout {
r.logger.Warn("failed to contact", "server-id", server.ID, "time", diff)
} else {
r.logger.Debug("failed to contact", "server-id", server.ID, "time", diff)
}
}
metrics.AddSample([]string{"raft", "leader", "lastContact"}, float32(diff/time.Millisecond))
}
}
// Verify we can contact a quorum
quorum := r.quorumSize()
if contacted < quorum {
r.logger.Warn("failed to contact quorum of nodes, stepping down")
r.setState(Follower)
metrics.IncrCounter([]string{"raft", "transition", "leader_lease_timeout"}, 1)
}
return maxDiff
}
// quorumSize is used to return the quorum size. This must only be called on
// the main thread.
// TODO: revisit usage
func (r *Raft) quorumSize() int {
voters := 0
for _, server := range r.configurations.latest.Servers {
if server.Suffrage == Voter {
voters++
}
}
return voters/2 + 1
}
// restoreUserSnapshot is used to manually consume an external snapshot, such
// as if restoring from a backup. We will use the current Raft configuration,
// not the one from the snapshot, so that we can restore into a new cluster. We
// will also use the higher of the index of the snapshot, or the current index,
// and then add 1 to that, so we force a new state with a hole in the Raft log,
// so that the snapshot will be sent to followers and used for any new joiners.
// This can only be run on the leader, and returns a future that can be used to
// block until complete.
func (r *Raft) restoreUserSnapshot(meta *SnapshotMeta, reader io.Reader) error {
defer metrics.MeasureSince([]string{"raft", "restoreUserSnapshot"}, time.Now())
// Sanity check the version.
version := meta.Version
if version < SnapshotVersionMin || version > SnapshotVersionMax {
return fmt.Errorf("unsupported snapshot version %d", version)
}
// We don't support snapshots while there's a config change
// outstanding since the snapshot doesn't have a means to
// represent this state.
committedIndex := r.configurations.committedIndex
latestIndex := r.configurations.latestIndex
if committedIndex != latestIndex {
return fmt.Errorf("cannot restore snapshot now, wait until the configuration entry at %v has been applied (have applied %v)",
latestIndex, committedIndex)
}
// Cancel any inflight requests.
for {
e := r.leaderState.inflight.Front()
if e == nil {
break
}
e.Value.(*logFuture).respond(ErrAbortedByRestore)
r.leaderState.inflight.Remove(e)
}
// We will overwrite the snapshot metadata with the current term,
// an index that's greater than the current index, or the last
// index in the snapshot. It's important that we leave a hole in
// the index so we know there's nothing in the Raft log there and
// replication will fault and send the snapshot.
term := r.getCurrentTerm()
lastIndex := r.getLastIndex()