Stable Diffusion inference best known configurations with Intel® Extension for PyTorch.
Use Case | Framework | Model Repo | Branch/Commit/Tag | Optional Patch |
---|---|---|---|---|
Inference | PyTorch | https://huggingface.co/stabilityai/stable-diffusion-2-1 | - | - |
- Installation of PyTorch and Intel Extension for PyTorch
Follow link to install build Pytorch, IPEX, TorchVison and TCMalloc.
- Set Tcmalloc Preload for better performance The tcmalloc should be built from the General setup section.
export LD_PRELOAD="path/lib/libtcmalloc.so":$LD_PRELOAD
- Set IOMP preload for better performance IOMP should be installed in your conda env from the General setup section.
export LD_PRELOAD=path/lib/libiomp5.so:$LD_PRELOAD
- Set ENV to use fp16 AMX if you are using a supported platform
export DNNL_MAX_CPU_ISA=AVX512_CORE_AMX_FP16
Download the 2017 COCO dataset using the download_dataset.sh
script.
Export the DATASET_DIR
environment variable to specify the directory where the dataset will be downloaded. This environment variable will be used again when running training scripts.
export DATASET_DIR=<directory where the dataset will be saved>
bash download_dataset.sh
Please get a quant_model.pt before run INT8-BF16 model or INT8-FP32 model. Please refer the link.
-
git clone https://github.com/IntelAI/models.git
-
cd models/models_v2/pytorch/stable_diffusion/inference/cpu
-
Create virtual environment
venv
and activate it:python3 -m venv venv . ./venv/bin/activate
-
Run setup.sh
./setup.sh
-
Install the latest CPU versions of torch, torchvision and intel_extension_for_pytorch
-
Setup required environment paramaters
Parameter | export command |
---|---|
TEST_MODE (THROUGHPUT, ACCURACY, REALTIME) | export TEST_MODE=THROUGHPUT |
DISTRIBUTED (Only for ACCURACY) | export DISTRIBUTED=TRUE |
OUTPUT_DIR | export OUTPUT_DIR=$(pwd) |
DATASET_DIR | export DATASET_DIR=<path_to_dataset_dir> |
MODE | export MODE=<choose from: eager, ipex-jit, compile-ipex, compile-inductor> |
PRECISION | export PRECISION=bf16 (fp32, bf32, bf16, fp16, int8-fp32, int8-bf16) |
MODEL_DIR | export MODEL_DIR=$(pwd) |
BATCH_SIZE (optional) | export BATCH_SIZE=256 |
NNODES (required for DISTRIBUTED) | export NNODES=#your_node_number |
HOSTFILE (required for DISTRIBUTED) | export HOSTFILE=#your_ip_list_file #one ip per line |
LOCAL_BATCH_SIZE (optional for DISTRIBUTED) | export LOCAL_BATCH_SIZE=64 |
- Run
run_model.sh
Single-tile output will typically looks like:
time per prompt(s): 107.73
Latency: 107.65 s
Throughput: 0.00929 samples/sec
Final results of the inference run can be found in results.yaml
file.
results:
- key: throughput
value: 0.00929
unit: samples/sec
- key: latency
value: 107.73
unit: s
- key: accuracy
value: N/A
unit: FID