Skip to content

Latest commit

 

History

History
112 lines (93 loc) · 5 KB

File metadata and controls

112 lines (93 loc) · 5 KB

Mask RCNN training

Mask RCNN Training using Intel® Extension for TensorFlow.

Model Information

Use Case Framework Model Repo Branch/Commit/Tag Optional Patch
training TensorFlow DeepLearningExamples/MaskRCNN master EnableBF16.patch

Note: Refer to CONTAINER.md for MaskRCNN training instructions using docker containers.

Pre-Requisite

  • Host has Intel® Data Center GPU Max

  • Host has installed latest Intel® Data Center GPU Max Series Driver https://dgpu-docs.intel.com/driver/installation.html

  • The following Intel® oneAPI Base Toolkit components are required:

    • Intel® oneAPI DPC++ Compiler (Placeholder DPCPPROOT as its installation path)
    • Intel® oneAPI Math Kernel Library (oneMKL) (Placeholder MKLROOT as its installation path)
    • Intel® oneAPI MPI Library
    • Intel® oneAPI TBB Library
    • Intel® oneAPI CCL Library

    Follow instructions at Intel® oneAPI Base Toolkit Download page to setup the package manager repository.

Dataset

Download & preprocess COCO 2017 dataset.

export DATASET_DIR=/path/to/dataset/dir
git clone https://github.com/NVIDIA/DeepLearningExamples.git
cd ./DeepLearningExamples/TensorFlow2/Segmentation/MaskRCNN/dataset
bash dataset/download_and_preprocess_coco.sh $DATASET_DIR

Training

  1. git clone https://github.com/IntelAI/models.git

  2. cd models/models_v2/tensorflow/maskrcnn/training/gpu

  3. Create virtual environment venv and activate it:

    python3 -m venv venv
    . ./venv/bin/activate
    
  4. Run setup.sh

    ./setup.sh
    
  5. Install tensorflow and ITEX

  6. Set environment variables for Intel® oneAPI Base Toolkit: Default installation location {ONEAPI_ROOT} is /opt/intel/oneapi for root account, ${HOME}/intel/oneapi for other accounts

    source {ONEAPI_ROOT}/compiler/latest/env/vars.sh
    source {ONEAPI_ROOT}/mkl/latest/env/vars.sh
    source {ONEAPI_ROOT}/tbb/latest/env/vars.sh
    source {ONEAPI_ROOT}/mpi/latest/env/vars.sh
    source {ONEAPI_ROOT}/ccl/latest/env/vars.sh
  7. Download weights

        pushd .
        git clone https://github.com/NVIDIA/DeepLearningExamples.git
        cd ./DeepLearningExamples/TensorFlow2/Segmentation/MaskRCNN
        python scripts/download_weights.py --save_dir=./weights
        popd 
    
  8. Setup required environment paramaters

    Parameter export command
    DATASET_DIR export DATASET_DIR=/the/path/to/dataset
    OUTPUT_DIR (optional) export OUTPUT_DIR=/the/path/to/output_dir
    BATCH_SIZE (optional) export BATCH_SIZE=4
    PRECISION export PRECISION=bfloat16 (bfloat16 or fp32)
    EPOCHS (optional) export EPOCHS=1
    STEPS_PER_EPOCH (optional) export STEPS_PER_EPOCH=20
    MULTI_TILE export MULTI_TILE=False (False or True)
  9. Run run_model.sh

Output

Single-tile output will typically look like:

2023-09-11 14:54:49,905 I dllogger        (1, 20) loss: 639.5632934570312
2023-09-11 14:54:49,906 I dllogger        (1, 20) train_time: 23.89216899871826, train_throughput: 21.438093303125907
2023-09-11 14:54:49,914 I dllogger        (1,) loss: 639.5632934570312
2023-09-11 14:54:49,914 I dllogger        () loss: 639.5632934570312
2023-09-11 14:54:49,915 I dllogger        () train_time: 23.90118169784546, train_throughput: 23.507529269636105

Multi-tile output will typically look like:

[1] 2023-10-28 06:00:28,866 I dllogger        (1, 20) train_time: 38.43677306175232, train_throughput: 27.085276273687406
[0] 2023-10-28 06:00:28,866 I dllogger        (1, 20) train_time: 38.44535684585571, train_throughput: 27.104091813787576
[1] 2023-10-28 06:00:28,870 I dllogger        (1,) loss: 694.025390625
[1] 2023-10-28 06:00:28,870 I dllogger        () loss: 694.025390625
[0] 2023-10-28 06:00:28,870 I dllogger        (1,) loss: 694.025390625
[1] 2023-10-28 06:00:28,870 I dllogger        () train_time: 38.44074249267578, train_throughput: 27.125991704955165
[0] 2023-10-28 06:00:28,870 I dllogger        () loss: 694.025390625
[0] 2023-10-28 06:00:28,870 I dllogger        () train_time: 38.449461460113525, train_throughput: 27.118943899083977

Final results of the training run can be found in results.yaml file.

results:
 - key: throughput
   value: 23.507529269636105
   unit: images/sec