-
Notifications
You must be signed in to change notification settings - Fork 44
End to End Test
This document outlines the setup for Torchdynamo Benchmarks with XPU Backend for Triton*. It includes various suites and serves as a common frontend usage guide.
The Benchmark contains different suites and shares as a common frontend usage. This doc below is an example showing Hugging Face*, TIMM Models and TorchBench End-to-End models within the Torchdynamo Benchmarks context.
The PyTorch version should be the same as the one in installation guide for intel_extension_for_pytorch.
The scripts on Torchdynamo Benchmarks automatically download and install the transformers and timm packages.
Installation With Pinned Version
Normally, the pinned commit may be lack of main stream for a long time. You could also try using the latest version, but please be aware that there may have problems like "Failed to Load Model xxx". If you encountered this, please consider checking your package aligning the pinned commit.
Please get the transformer_pinned_commit and timm_pinned_commit aligning with your pytorch version. Then install the package, use:
# Transformer for HuggingFace
pip install "git+https://github.com/huggingface/transformers@${commit}"
# TIMM Models
pip install "git+https://github.com/huggingface/pytorch-image-models@${commit}"
There are instances where the script may uninstall the XPU version of PyTorch and install the CUDA version instead. Therefore, verifying the PyTorch version before running is crucial.
# Wrong one, it uses CUDA version
(triton_env) ➜ python
>>> import torch
>>> torch.__version__
'2.1.0+cu121'
>>> torch.__file__
'/home/user/miniconda3/envs/triton_env/lib/python3.10/site-packages/torch/__init__.py'
# Correct one, should use XPU
>>> import torch
>>> torch.__version__
'2.1.0a0+gitdd9913f'
>>> torch.__file__
'/home/user/pytorch/torch/__init__.py'
If the PyTorch version is incorrect, please reinstall the XPU version of PyTorch.
TorchBench relies on torchvision,torchtext and torchaudio. Since it by default build with CUDA support, for XPU support, all of these packages needs to be BUILD FROM SOURCE.
Please follow the following command for building and installation dependencies.
If you wish to use the pinned commit, please refer every package commit in ci_commit_pins folder. Normally you are recommended to use the pinned commit.
git clone --recursive https://github.com/pytorch/vision.git
cd vision
# Optionally `git checkout {pinned_commit}`
git checkout `cat {torch_src_folder}/.github/ci_commit_pins/vision.txt`
conda install libpng jpeg
conda install -c conda-forge ffmpeg
python setup.py install
git clone --recursive https://github.com/pytorch/text
cd text
# Optionally `git checkout {pinned_commit}`
git checkout `cat {torch_src_folder}/.github/ci_commit_pins/text.txt`
python setup.py clean install
Note that when building, it has the following error, it could be ignored.
Processing dependencies for torchtext==0.17.0a0+c0d0685
error: torch 2.1.0a0+gitdd9913f is installed but torch==2.1.0 is required by {'torchdata'}
git clone --recursive https://github.com/pytorch/audio.git
cd audio
# Optionally `git checkout {pinned_commit}`
git checkout `cat {torch_src_folder}/.github/ci_commit_pins/audio.txt`
python setup.py install
Ensure all dependencies are correctly installed:
python -c "import torchvision,torchtext,torchaudio;print(torchvision.__version__, torchtext.__version__, torchaudio.__version__)"
Temporary Personal Repo As the TorchBench repo has many device dependent code, we are on an upstreaming status for making the code device agnostic. For now, please use the temporary private repo:
https://github.com/weishi-deng/benchmark
Then install TorchBenchmark as a library:
conda install git-lfs pyyaml pandas scipy psutil
pip install pyre_extensions
pip install torchrec
# Use the temporary repo
git clone --recursive https://github.com/weishi-deng/benchmark
## DO NOT USE THIS FOR NOW
# git clone --recursive https://github.com/pytorch/benchmark.git
cd benchmark
# Optionally `git checkout {pinned_commit}`
python install.py
# Note that -e is necessary
pip install -e .
Simply run the model using the following sh file. Note that there are some tricks for debugging. It is recommended to refer to Debugging Tips.
Put the following script under the PyTorch source folder, then execute the command:
#! /bin/bash
# This script work for xpu / cuda device inductor tests
# bash inductor_xpu_test.sh huggingface amp_bf16 training performance xpu 2 static 1 0 MBartForConditionalGeneration
SUITE=${1:-huggingface} # huggingface / torchbench / timm_models
DT=${2:-float32} # float32 / float16 / amp_bf16 / amp_fp16
MODE=${3:-inference} # inference / training
SCENARIO=${4:-accuracy} # accuracy / performance
DEVICE=${5:-xpu} # xpu / cuda
CARD=${6:-0} # 0 / 1 / 2 / 3 ...
SHAPE=${7:-static} # static / dynamic
NUM_SHARDS=${8} # num test shards
SHARD_ID=${9} # shard id
MODEL_ONLY=${10} # GoogleFnet / T5Small
WORKSPACE=`pwd`
LOG_DIR=$WORKSPACE/inductor_log/${SUITE}/${DT}
mkdir -p ${LOG_DIR}
LOG_NAME=inductor_${SUITE}_${DT}_${MODE}_${DEVICE}_${SCENARIO}
export TORCHINDUCTOR_CACHE_DIR=${LOG_DIR}
export TORCH_COMPILE_DEBUG_DIR=${LOG_DIR}/${MODEL_ONLY}
# Uncomment for the full debug log
# export TORCH_COMPILE_DEBUG=1
Model_only_extra=""
if [[ -n "$MODEL_ONLY" ]]; then
echo "Testing model ${MODEL_ONLY}"
Model_only_extra="--only ${MODEL_ONLY}"
fi
Cur_Ver=`pip list | grep "^torch " | awk '{print $2}' | cut -d"+" -f 1`
if [ $(printf "${Cur_Ver}\n2.0.2"|sort|head -1) = "${Cur_Ver}" ]; then
Mode_extra="";
else
# For PT 2.1
Mode_extra="--inference --freezing ";
fi
if [[ $MODE == "training" ]]; then
echo "Testing with training mode."
Mode_extra="--training "
fi
Shape_extra=""
if [[ $SHAPE == "dynamic" ]]; then
echo "Testing with dynamic shapes."
Shape_extra="--dynamic-shapes --dynamic-batch-only "
fi
partition_flags=""
if [[ -n "$NUM_SHARDS" && -n "$SHARD_ID" ]]; then
partition_flags="--total-partitions $NUM_SHARDS --partition-id $SHARD_ID "
fi
ulimit -n 1048576
if [[ $DT == "amp_bf16" ]]; then
ZE_AFFINITY_MASK=${CARD} python benchmarks/dynamo/${SUITE}.py --${SCENARIO} --amp -d${DEVICE} -n10 --no-skip --dashboard ${Mode_extra} ${Shape_extra} ${partition_flags} ${Model_only_extra} --backend=inductor --timeout=4800 --export-profiler-trace --output=${LOG_DIR}/${LOG_NAME}.csv 2>&1 | tee ${LOG_DIR}/${LOG_NAME}.log
elif [[ $DT == "amp_fp16" ]]; then
export INDUCTOR_AMP_DT=float16
ZE_AFFINITY_MASK=${CARD} python benchmarks/dynamo/${SUITE}.py --${SCENARIO} --amp -d${DEVICE} -n10 --no-skip --dashboard ${Mode_extra} ${Shape_extra} ${partition_flags} ${Model_only_extra} --backend=inductor --timeout=4800 --output=${LOG_DIR}/${LOG_NAME}.csv 2>&1 | tee ${LOG_DIR}/${LOG_NAME}.log
else
ZE_AFFINITY_MASK=${CARD} python benchmarks/dynamo/${SUITE}.py --${SCENARIO} --${DT} -d${DEVICE} -n10 --no-skip --dashboard ${Mode_extra} ${Shape_extra} ${partition_flags} ${Model_only_extra} --backend=inductor --timeout=4800 --output=${LOG_DIR}/${LOG_NAME}.csv 2>&1 | tee ${LOG_DIR}/${LOG_NAME}.log
fi
# Run all models
bash xpu_run_batch.sh huggingface amp_bf16 training performance xpu 0
# Run single model `T5Small`
bash xpu_run_batch.sh huggingface amp_bf16 training performance xpu 0 static 1 0 T5Small
Environment variables for debugging include:
-
TORCHINDUCTOR_CACHE_DIR={some_DIR}
: Specifies the cache directory. Useful for debugging. -
TORCH_COMPILE_DEBUG=1
: Enables debug information printing.
By default, the cache dir is under /tmp/torchinductor_{user}/
, It's advisable to change this when debugging, as demonstrated in the shell script above. You could also manually set as following:
LOG_DIR=${WORKSPACE}/inductor_log/${SUITE}/${MODEL}/${DT}
mkdir -p ${LOG_DIR}
export TORCHINDUCTOR_CACHE_DIR=${LOG_DIR}
For fine-grained control, the typical command structure is as follows:
python benchmarks/dynamo/${SUITE}.py --only ${MODEL} --accuracy --amp -dxpu -n50 --no-skip --dashboard ${Mode_extra} --backend=inductor --timeout=4800 --output=${LOG_DIR}/${LOG_NAME}.csv
Full argument lists are accessible via:
python benchmarks/dynamo/huggingface.py --help
Additional configuration settings are available in Python code, specifically in torch._dynamo.config and torch._inductor.config. Set these configurations as needed.
It is recommended to set the following environment variables for debugging, they are set in the above script.
-
TORCHINDUCTOR_CACHE_DIR={some-dir}
: Designates the torchinductor cache location. -
TRITON_CACHE_DIR={some-dir}
: Specifies the Triton cache directory, usually within theTORCHINDUCTOR_CACHE_DIR/triton
folder. -
TORCH_COMPILE_DEBUG_DIR={some-dir}
: Where the compile debug files be put. You could see folders likeaot_torchinductor
containing the torchinductor logs, andtorchdynamo
folder containing the dynamo log. -
TORCH_COMPILE_DEBUG=1
: Detailed for TorchInductor Tracing. It will print a lot of messages. Thus it is recommended to redirect the output to the file. By setting this flag, the re-producible Python file could be easily found.
Alternatively, the above env flag could also be set in a Python file like below, these three configurations could help to generate more readable kernel names.
# helps to generate descriptive kernel names
torch._inductor.config.triton.unique_kernel_names = True
torch._inductor.config.kernel_name_max_ops = 8
Reproducing Errors with Smaller Python File
For efficiency, reproduce errors using a smaller Python file. Enable TORCH_COMPILE_DEBUG=1
to generate detailed outputs, which can be redirected to a file for easier inspection. The debug folder will contain files like fx_graph_readable.py
, fx_graph_runnable.py
, and output_code.py
, which can be used for further analysis and debugging.
Note that there are a lot of outputs, one could direct the output to a file.
TORCH_COMPILE_DEBUG=1 python ... &> test.log
For now, we need to go into the output log to find where the reproduced code is. By looking at the above output, there are some lines like below:
torch._inductor.debug: [WARNING] GoogleFnet__3_inference_3 debug trace: /tmp/torchinductor_username/rc/dlkmcaknezrsmfxw5emr4pdy5qtny47pozz5wihpvwhsi7x3elg.debug
Or you could set the folder with the TORCH_COMPILE_DEBUG_DIR
.
In this folder, you could find the file structure like below:
.
├── cdlkmcaknezrsmfxw5emr4pdy5qtny47pozz5wihpvwhsi7x3elg.debug
│ ├── debug.log
│ ├── fx_graph_readable.py
│ ├── fx_graph_runnable.py
│ ├── fx_graph_transformed.py
│ ├── ir_post_fusion.txt
│ ├── ir_pre_fusion.txt
│ └── output_code.py
└── cdlkmcaknezrsmfxw5emr4pdy5qtny47pozz5wihpvwhsi7x3elg.py
The cdlkmcaknezrsmfxw5emr4pdy5qtny47pozz5wihpvwhsi7x3elg.py
contains the runnable file that we need.
You could open that Python file, import intel_extension_for_pytorch
, and then run the Python file as normal.
In the future, you could use minifer to produce the above, by enabling the following flags:
torch._dynamo.config.repro_after="dynamo"
To profile the result, one should use the performance
mode instead of accuracy
, and make sure the profiler trace flag --export-profiler-trace
is enabled in the inductor_xpu_test.sh
. i.e, One should use
python benchmarks/dynamo/${SUITE}.py ... --performance --export-profiler-trace...
For now, we use the profiler_legacy to catch the profiling result. We are migrating legacy profiling to kineto profiling. As the legacy profiling is more stable, it is recommended to use legacy profiling first.
A typical profiling code would look like below:
# import all necessary libraries
import torch
import intel_extension_for_pytorch
# these lines won't be profiled before enabling profiler tool
input_tensor = torch.randn(1024, dtype=torch.float32, device='xpu:0')
# enable legacy profiler tool with a `with` statement
with torch.autograd.profiler_legacy.profile(use_xpu=True) as prof:
# do what you want to profile here after the `with` statement with proper indent
output_tensor_1 = torch.nonzero(input_tensor)
output_tensor_2 = torch.unique(input_tensor)
# print the result table formatted by the legacy profiler tool as your wish
print(prof.key_averages().table(sort_by="self_xpu_time_total"))
For E2E tests, there are several places to change. You should cd to pytorch/benchmarks/dynamo
and change the common.py
as below. Note that the line number may not be the same, but the change places are unique.
@@ -530,7 +536,7 @@ def speedup_experiment(args, model_iter_fn, model, example_inputs, **kwargs):
@contextlib.contextmanager
def maybe_profile(*args, **kwargs):
if kwargs.pop("enabled", True):
- with torch.profiler.profile(*args, **kwargs) as p:
+ with torch.autograd.profiler_legacy.profile(enabled=True, use_xpu=True, *args, **kwargs) as p:
yield p
else:
yield
@@ -540,7 +546,7 @@ def speedup_experiment(args, model_iter_fn, model, example_inputs, **kwa
rgs):
prof: torch.profiler.profile = kwargs.pop("p", None)
mark = kwargs.pop("mark", None)
if prof:
- with torch.profiler.record_function(mark):
+ with torch.autograd.profiler.record_function(mark):
yield
else:
yield
We are migrating to kineto profiling. In the future, this will be the only option. A typical profiler case would like below. For now, be sure to enable the environmental flag export IPEX_ZE_TRACING=1
.
import torch
import intel_extension_for_pytorch
from torch.profiler import profile, ProfilerActivity
a = torch.randn(3).xpu()
b = torch.randn(3).xpu()
with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.XPU]) as prof:
c = a + b
print(prof.key_averages().table())
Same as the legacy profiling, you could modify the code like:
@@ -530,7 +536,7 @@ def speedup_experiment(args, model_iter_fn, model, example_inputs, **kwargs):
@contextlib.contextmanager
def maybe_profile(*args, **kwargs):
if kwargs.pop("enabled", True):
- with torch.profiler.profile(*args, **kwargs) as p:
+ with torch.autograd.profile(activities=[ProfilerActivity.CPU, ProfilerActivity.XPU], *args, **kwargs) as p:
yield p
else:
yield
To run the model, you should add the --export-profiler-trace
flag when running. Because use the profiling process will link libtorch, this will greatly reduce the kernel compiling time. It is highly recommended to run twice for quicker result:
- On the first run, run the model without
--export-profiler-trace
flag. This will generate necessary caches. - On the second run, run with
--export-profiler-trace
flag. This will actually do the profiling result.
If you wish to make kernel name more readable, you could enable with the following config:
# common.py
torch._inductor.config.triton.unique_kernel_names = True
torch._inductor.config.kernel_name_max_ops = 8
The chrome trace file by default will export to torch._dynamo.config.base_dir
, you could control this process by setting torch._dynamo.config.base_dir
to the folder you want.
One example of the result shown as below:
------------------------------------------------------- ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------
Name Self CPU % Self CPU CPU total % CPU total CPU time avg Self XPU Self XPU % XPU total XPU time avg # of Calls
------------------------------------------------------- ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------
aten::mm 17.10% xx.yyy ms 17.35% xx.yyy ms xx.yyy us xx.yyy ms 25.33% xx.yyy ms xx.yyy us 1940
XPU Triton kernel:triton_fused__unsafe_view__unsafe_... 0.35% xx.yyy ms 0.35% xx.yyy ms xx.yyy us xx.yyy ms 18.07% xx.yyy ms xx.yyy us 120
XPU Triton kernel:triton_fused__unsafe_view_18__unsa... 0.35% xx.yyy ms 0.35% xx.yyy ms xx.yyy us xx.yyy ms 17.31% xx.yyy ms xx.yyy us 120
aten::bmm 5.99% xx.yyy ms 6.06% xx.yyy ms xx.yyy us xx.yyy ms 10.99% xx.yyy ms xx.yyy us 720
XPU Triton kernel:triton_fused__unsafe_view_18__unsa... 0.40% xx.yyy ms 0.40% xx.yyy ms xx.yyy us xx.yyy ms 7.89% xx.yyy ms xx.yyy us 120
XPU Triton kernel:triton_fused__unsafe_view__unsafe_... 0.46% xx.yyy ms 0.46% xx.yyy ms xx.yyy us xx.yyy ms 3.07% xx.yyy ms xx.yyy us 240
XPU Triton kernel:triton_fused__unsafe_view_18__unsa... 0.07% xx.yyy us 0.07% xx.yyy us xx.yyy us xx.yyy ms 2.71% xx.yyy ms xx.yyy us 20
XPU Triton kernel:triton_fused_convert_element_type_... 3.39% xx.yyy ms 3.39% xx.yyy ms xx.yyy us xx.yyy ms 2.70% xx.yyy ms xx.yyy us 1440
XPU Triton kernel:triton_fused_add_clone_convert_ele... 1.40% xx.yyy ms 1.40% xx.yyy ms xx.yyy us xx.yyy ms 2.48% xx.yyy ms xx.yyy us 720
...
------------------------------------------------------- ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------
Self CPU time total: xxx.yyyms
Self XPU time total: xxx.yyyms