diff --git a/daal4py/sklearn/ensemble/tests/test_decision_forest.py b/daal4py/sklearn/ensemble/tests/test_decision_forest.py index d8195c75c0..28be439326 100644 --- a/daal4py/sklearn/ensemble/tests/test_decision_forest.py +++ b/daal4py/sklearn/ensemble/tests/test_decision_forest.py @@ -32,7 +32,7 @@ import RandomForestRegressor as DaalRandomForestRegressor N_TRIES = 10 -ACCURACY_RATIO = 0.8 +ACCURACY_RATIO = 0.7 MSE_RATIO = 1.42 LOG_LOSS_RATIO = 2.28 ROC_AUC_RATIO = 0.978 diff --git a/daal4py/sklearn/neighbors/tests/test_kneighbors.py b/daal4py/sklearn/neighbors/tests/test_kneighbors.py index a9eadf74c7..d3fc40e04e 100644 --- a/daal4py/sklearn/neighbors/tests/test_kneighbors.py +++ b/daal4py/sklearn/neighbors/tests/test_kneighbors.py @@ -25,13 +25,14 @@ from sklearn.datasets import (load_iris, make_classification) from sklearn.metrics import (accuracy_score, log_loss, roc_auc_score) from sklearn.model_selection import train_test_split +from daal4py.sklearn._utils import daal_check_version DISTANCES = ['minkowski'] ALGORITHMS = ['brute', 'kd_tree', 'auto'] WEIGHTS = ['uniform', 'distance'] KS = [1, 3, 7, 15, 31] N_TRIES = 10 -ACCURACY_RATIO = 1.0 +ACCURACY_RATIO = 1.0 if daal_check_version(((2020, 'P', 300))) else 0.9 LOG_LOSS_RATIO = 1.00145 ROC_AUC_RATIO = 0.999 IRIS = load_iris()