forked from SciSharp/TensorFlow.NET
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLogisticRegression.cs
190 lines (152 loc) · 7.16 KB
/
LogisticRegression.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
/*****************************************************************************
Copyright 2018 The TensorFlow.NET Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
******************************************************************************/
using NumSharp;
using System;
using System.Diagnostics;
using System.IO;
using Tensorflow;
using Tensorflow.Hub;
using static Tensorflow.Binding;
namespace TensorFlowNET.Examples
{
/// <summary>
/// A logistic regression learning algorithm example using TensorFlow library.
/// This example is using the MNIST database of handwritten digits
/// https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/logistic_regression.py
/// </summary>
public class LogisticRegression : IExample
{
public bool Enabled { get; set; } = true;
public string Name => "Logistic Regression";
public bool IsImportingGraph { get; set; } = false;
public int training_epochs = 10;
public int? train_size = null;
public int validation_size = 5000;
public int? test_size = null;
public int batch_size = 100;
private float learning_rate = 0.01f;
private int display_step = 1;
Datasets<MnistDataSet> mnist;
public bool Run()
{
PrepareData();
// tf Graph Input
var x = tf.placeholder(tf.float32, new TensorShape(-1, 784)); // mnist data image of shape 28*28=784
var y = tf.placeholder(tf.float32, new TensorShape(-1, 10)); // 0-9 digits recognition => 10 classes
// Set model weights
var W = tf.Variable(tf.zeros(new Shape(784, 10)));
var b = tf.Variable(tf.zeros(new Shape(10)));
// Construct model
var pred = tf.nn.softmax(tf.matmul(x, W) + b); // Softmax
// Minimize error using cross entropy
var cost = tf.reduce_mean(-tf.reduce_sum(y * tf.log(pred), reduction_indices: 1));
// Gradient Descent
var optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost);
// Initialize the variables (i.e. assign their default value)
var init = tf.global_variables_initializer();
var sw = new Stopwatch();
using (var sess = tf.Session())
{
// Run the initializer
sess.run(init);
// Training cycle
foreach (var epoch in range(training_epochs))
{
sw.Start();
var avg_cost = 0.0f;
var total_batch = mnist.Train.NumOfExamples / batch_size;
// Loop over all batches
foreach (var i in range(total_batch))
{
var (batch_xs, batch_ys) = mnist.Train.GetNextBatch(batch_size);
// Run optimization op (backprop) and cost op (to get loss value)
(_, float c) = sess.run((optimizer, cost),
(x, batch_xs),
(y, batch_ys));
// Compute average loss
avg_cost += c / total_batch;
}
sw.Stop();
// Display logs per epoch step
if ((epoch + 1) % display_step == 0)
print($"Epoch: {(epoch + 1):D4} Cost: {avg_cost:G9} Elapse: {sw.ElapsedMilliseconds}ms");
sw.Reset();
}
print("Optimization Finished!");
// SaveModel(sess);
// Test model
var correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1));
// Calculate accuracy
var accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32));
float acc = accuracy.eval(sess, (x, mnist.Test.Data), (y, mnist.Test.Labels));
print($"Accuracy: {acc:F4}");
return acc > 0.9;
}
}
public void PrepareData()
{
mnist = MnistModelLoader.LoadAsync(".resources/mnist", oneHot: true, trainSize: train_size, validationSize: validation_size, testSize: test_size, showProgressInConsole: true).Result;
}
public void SaveModel(Session sess)
{
var saver = tf.train.Saver();
var save_path = saver.save(sess, ".resources/logistic_regression/model.ckpt");
tf.train.write_graph(sess.graph, ".resources/logistic_regression", "model.pbtxt", as_text: true);
FreezeGraph.freeze_graph(input_graph: ".resources/logistic_regression/model.pbtxt",
input_saver: "",
input_binary: false,
input_checkpoint: ".resources/logistic_regression/model.ckpt",
output_node_names: "Softmax",
restore_op_name: "save/restore_all",
filename_tensor_name: "save/Const:0",
output_graph: ".resources/logistic_regression/model.pb",
clear_devices: true,
initializer_nodes: "");
}
public void Predict(Session sess)
{
var graph = new Graph().as_default();
graph.Import(Path.Join(".resources/logistic_regression", "model.pb"));
// restoring the model
// var saver = tf.train.import_meta_graph("logistic_regression/tensorflowModel.ckpt.meta");
// saver.restore(sess, tf.train.latest_checkpoint('logistic_regression'));
var pred = graph.OperationByName("Softmax");
var output = pred.outputs[0];
var x = graph.OperationByName("Placeholder");
var input = x.outputs[0];
// predict
var (batch_xs, batch_ys) = mnist.Train.GetNextBatch(10);
var results = sess.run(output, new FeedItem(input, batch_xs[np.arange(1)]));
if (results[0].argmax() == (batch_ys[0] as NDArray).argmax())
print("predicted OK!");
else
throw new ValueError("predict error, should be 90% accuracy");
}
public Graph ImportGraph()
{
throw new NotImplementedException();
}
public Graph BuildGraph()
{
throw new NotImplementedException();
}
public void Train(Session sess)
{
throw new NotImplementedException();
}
public void Test(Session sess)
{
throw new NotImplementedException();
}
}
}