Skip to content

Latest commit

 

History

History
133 lines (103 loc) · 10.9 KB

README.md

File metadata and controls

133 lines (103 loc) · 10.9 KB

This paper was accepted at CVPR 2022!

Slow description video.

This repo provides code for QB-Norm (Cross Modal Retrieval with Querybank Normalisation)

Usage example

python dynamic_inverted_softmax.py --sims_train_test_path msrvtt/tt-ce-train-captions-test-videos-seed0.pkl --sims_test_path msrvtt/tt-ce-test-captions-test-videos-seed0.pkl --test_query_masks_path msrvtt/tt-ce-test-query_masks.pkl

To test QB-Norm on your own data you need to:

  1. Extract the similarity matrix between the caption from the training split and the videos from the testing split path/to/sims/train/test
  2. Extract testing split similarity matrix (similarities between testing captions and testing video) path/to/sims/test
  3. Run QB-Norm
python dynamic_inverted_softmax.py --sims_train_test_path path/to/sims/train/test --sims_test_path path/to/sims/test

Data

The similarity matrices for each method were extracted using the official repositories as follows: CE+, TT-CE+, CLIP2Video, CLIP4Clip (for CLIP4Clip we used the official repo to train from scratch new models since they do not provide pre-trained weights), CLIP, MMT, Audio-Retrieval.

Here you can find our trained weights for CLIP4Clip: MSRVTT, DiDeMo, LSMDC, Activity-Net.

You can download the extracted similarity matrices for training and testing here: MSRVTT, MSRVTT 1kA CLIP2Video, MSVD, DiDeMo, LSMDC.

Text-Video retrieval results

The value used for the inverse temperature is 20, with the exception for CLIP2Video where we used 1/1.99.

QB-Norm Results on MSRVTT Benchmark

Model Split Task R@1 R@5 R@10 MdR Geom
CE+ Full t2v 14.4(0.1) 37.4(0.1) 50.2(0.1) 10.0(0.0) 30.0(0.1)
CE+ (+QB-Norm) Full t2v 16.4(0.0) 40.3(0.1) 52.9(0.1) 9.0(0.0) 32.7(0.1)
TT-CE+ Full t2v 14.9(0.1) 38.3(0.1) 51.5(0.1) 10.0(0.0) 30.9(0.1)
TT-CE+ (+QB-Norm) Full t2v 17.3(0.0) 42.1(0.2) 54.9(0.1) 8.0(0.0) 34.2(0.1)

QB-Norm Results on MSVD Benchmark

Model Split Task R@1 R@5 R@10 MdR Geom
TT-CE+ Full t2v 25.4(0.3) 56.9(0.4) 71.3(0.2) 4.0(0.0) 46.9(0.3)
TT-CE+ (+QB-Norm) Full t2v 28.9(0.3) 62.0(0.4) 74.8(0.3) 3.0(0.0) 43.1(0.1)
CLIP2Video Full t2v 47.0 76.8 85.9 2.0 67.7
CLIP2Video (+QB-Norm) Full t2v 47.6 77.6 86.1 2.0 68.5

QB-Norm Results on DiDeMo Benchmark

Model Split Task R@1 R@5 R@10 MdR Geom
TT-CE+ Full t2v 21.6(0.7) 48.6(0.4) 62.9(0.6) 6.0(0.0) 40.4(0.4)
TT-CE+ (+QB-Norm) Full t2v 24.2(0.7) 50.8(0.7) 64.4(0.1) 5.3(0.5) 43.0(0.2)
CLIP4Clip Full t2v 43.0 70.5 80.0 2.0 62.4
CLIP4Clip (+QB-Norm) Full t2v 43.5 71.4 80.9 2.0 63.1

QB-Norm Results on LSMDC Benchmark

Model Split Task R@1 R@5 R@10 MdR Geom
TT-CE+ Full t2v 17.2(0.4) 36.5(0.6) 46.3(0.3) 13.7(0.5) 30.7(0.3)
TT-CE+ (+QB-Norm) Full t2v 17.8(0.4) 37.7(0.5) 47.6(0.6) 12.7(0.5) 31.7(0.3)
CLIP4Clip Full t2v 21.3 40.0 49.5 11.0 34.8
CLIP4Clip (+QB-Norm) Full t2v 22.3 40.1 49.5 11.0 35.4

The temperature used for CLIP4Clip method on the LSMDC dataset is 0.8.

QB-Norm Results on VaTeX Benchmark

Model Split Task R@1 R@5 R@10 MdR Geom
TT-CE+ Full t2v 53.2(0.2) 87.4(0.1) 93.3(0.0) 1.0(0.0) 75.7(0.1)
TT-CE+ (+QB-Norm) Full t2v 54.8(0.1) 88.2(0.1) 93.8(0.1) 1.0(0.0) 76.8(0.0)
CLIP2Video Full t2v 57.4 87.9 93.6 1.0 77.9
CLIP2Video (+QB-Norm) Full t2v 58.8 88.3 93.8 1.0 78.7

QB-Norm Results on QuerYD Benchmark

Model Split Task R@1 R@5 R@10 MdR Geom
CE+ Full t2v 13.2(2.0) 37.1(2.9) 50.5(1.9) 10.3(1.2) 29.1(2.2)
CE+ (+QB-Norm) Full t2v 14.1(1.8) 38.6(1.3) 51.1(1.6) 10.0(0.8) 30.2(1.7)
TT-CE+ Full t2v 14.4(0.5) 37.7(1.7) 50.9(1.6) 9.8(1.0) 30.3(0.9)
TT-CE+ (+QB-Norm) Full t2v 15.1(1.6) 38.3(2.4) 51.2(2.8) 10.3(1.7) 30.9(2.3)

Text-Image retrieval results

QB-Norm Results on MSCoCo Benchmark

Model Split Task R@1 R@5 R@10 MdR Geom
CLIP 5k t2i 30.3 56.1 67.1 4.0 48.5
CLIP (+QB-Norm) 5k t2i 34.8 59.9 70.4 3.0 52.8
MMT-Oscar 5k t2i 52.2 80.2 88.0 1.0 71.7
MMT-Oscar (+QB-Norm) 5k t2i 53.9 80.5 88.1 1.0 72.6

Text-Audio retrieval results

QB-Norm Results on AudioCaps Benchmark

Model Split Task R@1 R@5 R@10 MdR Geom
AR-CE Full t2a 23.1(0.6) 55.1(0.7) 70.7(0.6) 4.7(0.5) 44.8(0.7)
AR-CE (+QB-Norm) Full t2a 23.9(0.2) 57.1(0.3) 71.6(0.4) 4.0(0.0) 46.0(0.3)

References

If you find this code useful or use the extracted similarity matrices, please consider citing:

@inproceedings{bogolin2021cross,
      title={Cross Modal Retrieval with Querybank Normalisation}, 
      author={Simion-Vlad Bogolin and Ioana Croitoru and Hailin Jin and Yang Liu and Samuel Albanie},
      booktitle={CVPR}
      year={2022}
}