-
Notifications
You must be signed in to change notification settings - Fork 21
/
viz_val_vrep.py
279 lines (234 loc) · 13.9 KB
/
viz_val_vrep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
# @author Simon Stepputtis <sstepput@asu.edu>, Interactive Robotics Lab, Arizona State University
import json
import matplotlib.pyplot as plt
import numpy as np
from sklearn.metrics import mean_absolute_error
import pickle
from utils.voice import Voice
# Where to find the results file?
FILE_PATH = "ours_full_cl.json"
# Where to find the normalization
NORM_PATH = "../GDrive/normalization_v2.pkl"
normalization = pickle.load(open(NORM_PATH, mode="rb"), encoding="latin1")
norm = np.take(normalization["values"], indices=[0,1,2,3,4,5,30], axis=1)
voice_class = Voice(load=False)
def normalize(value, v_min, v_max):
if (value.shape[1] != v_min.shape[0] or v_min.shape[0] != v_max.shape[0] or
len(value.shape) != 2 or len(v_min.shape) != 1 or len(v_max.shape) != 1):
raise ArrayDimensionMismatch()
value = np.copy(value)
v_min = np.tile(np.expand_dims(v_min, 0), [value.shape[0], 1])
v_max = np.tile(np.expand_dims(v_max, 0), [value.shape[0], 1])
value = (value - v_min) / (v_max - v_min)
return value
def rotateCoordinates(px, py, angle=-45):
r_px = px * np.cos(np.deg2rad(angle)) + py * np.sin(np.deg2rad(angle))
r_py = py * np.cos(np.deg2rad(angle)) - px * np.sin(np.deg2rad(angle))
return (r_px, r_py)
def transformCoordinate(x, y, z=-1.6260e-02):
# top_left: [+1.0097e+00, -6.2800e-01, +5.0042e-03] [36, 3 ] [-5.3933e-01, +8.8861e-01, -1.6260e-02]
# bottom_left: [+1.0097e+00, +6.2850e-01, +5.0042e-03] [36, 317] [-1.4278e+00, +1.2640e-04, -1.6189e-02]
# bottom_right: [-1.0100e+00, +6.2850e-01, +5.0042e-03] [539, 317] [+3.3816e-04, -1.4280e+00, -1.6189e-02]
# top_right: [-1.0100e+00, -6.2800e-01, +5.0042e-03] [539, 3 ] [+8.8882e-01, -5.3954e-01, -1.6260e-02]
# source = [[-5.3933e-01, +8.8861e-01, -1.6260e-02], [-1.4278e+00, +1.2640e-04, -1.6189e-02], [+3.3816e-04, -1.4280e+00, -1.6189e-02], [+8.8882e-01, -5.3954e-01, -1.6260e-02]]
# destination = [[36,3], [36,317], [539,317], [539,3]]
# np.linalg.solve(source[:3], destination[:3])
tns = [[ 175.39848388, -176.86537052], [ -176.80979217, -176.86682693], [-17694.50268915, -3983.8149321 ]]
return np.dot([x,y,z], tns)
def plotPhaseArrows(data, key):
data = data[key]
ex_names = data.keys()
fig = plt.figure(figsize=(5.69, 3.2))
plt.imshow(plt.imread("vrep_empty.png"))
for exp in ex_names:
if key == "phase_1":
color = "g" if data[exp]["success"] else "r"
else:
color = "g" if data[exp]["success"] == 2 else ("y" if data[exp]["success"] == 1 else "r")
x,y = transformCoordinate(*data[exp]["locations"]["current"])
x2,y2 = transformCoordinate(*data[exp]["locations"]["target"])
plt.arrow(x, y, x2-x, y2-y, length_includes_head=True, width=0.01, head_width=2, color=color)
plt.title("Success Rate: " + key)
def averageBallSuccessPerTask(data):
ball_arrays = [data["phase_2"][exp]["ball_array"] for exp in data["phase_2"].keys()]
success_rate = []
for array in ball_arrays:
if len(array) == 0:
success_rate.append(0)
else:
success_rate.append(float(np.sum(array))/float(len(array)))
return np.mean(success_rate)
def interpolateTrajectory(trj, target):
trj = np.asarray(trj)
current_length = trj.shape[0]
dimensions = trj.shape[1]
result = np.zeros((target, trj.shape[1]), dtype=np.float32)
for i in range(dimensions):
result[:,i] = np.interp(np.linspace(0.0, 1.0, num=target), np.linspace(0.0, 1.0, num=current_length), trj[:,i])
return result
def calcMAE(trj, states):
trj = np.asarray(trj)
stt = np.asarray(states)
stt = interpolateTrajectory(stt, trj.shape[0])
return mean_absolute_error(trj[:,:6], stt[:,:6])
def getUsedFeatures(voice):
features = [0,0,0] # color, size, shape
color_words = voice_class.synonyms["red"] + voice_class.synonyms["green"] + voice_class.synonyms["blue"] + voice_class.synonyms["yellow"] + voice_class.synonyms["pink"] + [voice_class.test_words["red"], voice_class.test_words["green"], voice_class.test_words["blue"], voice_class.test_words["yellow"], voice_class.test_words["pink"]]
size_words = voice_class.synonyms["small"] + voice_class.synonyms["large"] + [voice_class.test_words["small"], voice_class.test_words["large"]]
shape_words = voice_class.synonyms["round"] + voice_class.synonyms["square"] + [voice_class.test_words["round"], voice_class.test_words["square"]]
for word in color_words:
if word in voice:
features[0] = 1
for word in size_words:
if word in voice:
features[1] = 2
for word in shape_words:
if word in voice:
features[2] = 4
return features
def debugColors(voice):
features = [0,0,0,0,0] # color, size, shape
red = voice_class.synonyms["red"] + [voice_class.test_words["red"]]
green = voice_class.synonyms["green"] + [voice_class.test_words["green"]]
blue = voice_class.synonyms["blue"] + [voice_class.test_words["blue"]]
yellow = voice_class.synonyms["yellow"] + [voice_class.test_words["yellow"]]
pink = voice_class.synonyms["pink"] + [voice_class.test_words["pink"]]
for word in red:
if word in voice:
features[0] = 1
for word in green:
if word in voice:
features[1] = 2
for word in blue:
if word in voice:
features[2] = 4
for word in yellow:
if word in voice:
features[3] = 8
for word in pink:
if word in voice:
features[4] = 16
return features
def overallStatistics(data):
data = cleanJson(data)
num_tasks = len(data["phase_1"].keys())
p1_correct_objects = [name for name in data["phase_1"].keys() if data["phase_1"][name]["locations"]["tid"] == data["phase_1"][name]["locations"]["tid/actual"][0][0]]
p2_correct_objects = [name for name in data["phase_2"].keys() if data["phase_2"][name]["locations"]["tid"] == data["phase_2"][name]["locations"]["tid/actual"][0][1]]
p1_names = [name for name in data["phase_1"].keys() if data["phase_1"][name]["success"] and name in p1_correct_objects]
p1_success = len(p1_names)
p2_names = [name for name in data["phase_2"].keys() if (lambda array: False if len(array) == 0 else float(np.sum(array))/float(len(array)) > 0.5)(data["phase_2"][name]["ball_array"]) and name in p2_correct_objects]
p2_success = len(p2_names)
oa_success = len([name for name in p1_names if name in p2_names])
print("Failed picking sentences:")
for stn in [(data["phase_1"][name]["language"]["original"], name) for name in data["phase_1"].keys() if name not in p1_names]:
print(" -> {}\t{}".format(stn[1], stn[0]))
print("Failed pouring sentences:")
for stn in [(data["phase_2"][name]["language"]["original"], name) for name in data["phase_2"].keys() if name not in p2_names]:
print(" -> {}\t{}".format(stn[1], stn[0]))
odist_success = np.mean(
[data["phase_1"][name]["locations"]["distance"] for name in data["phase_1"].keys() if name in p1_names] +
[data["phase_2"][name]["locations"]["distance"] for name in data["phase_2"].keys() if name in p2_names]
)
odist_failure = np.mean(
[data["phase_1"][name]["locations"]["distance"] for name in data["phase_1"].keys() if name not in p1_names] +
[data["phase_2"][name]["locations"]["distance"] for name in data["phase_2"].keys() if name not in p2_names]
)
if p2_success + p1_success == num_tasks * 2:
odist_failure = 0
cdetect = 0
cdetect += len([name for name in data["phase_1"].keys() if data["phase_1"][name]["locations"]["tid"] == data["phase_1"][name]["locations"]["tid/actual"][0][0]])
cdetect += len(p2_correct_objects)
cdetect = float(cdetect)/float(2*num_tasks) * 100.0
ball_arrays = [[len(data["phase_2"][name]["ball_array"]), np.sum(data["phase_2"][name]["ball_array"]), data["phase_2"][name]["language"]["quantity"], name] for name in data["phase_2"].keys()]
max_balls = max(ball_arrays, key=lambda x: x[0])[0]
avg_small = [float(v[1])/float(max_balls) for v in ball_arrays if v[2] == 1]
avg_large = [float(v[1])/float(max_balls) for v in ball_arrays if v[2] == 2]
avg_small_success = np.sum([1 for v in ball_arrays if v[2] == 1 and abs(float(v[1])/float(max_balls) - np.mean(avg_small)) < abs(float(v[1])/float(max_balls) - np.mean(avg_large)) and v[3] in p1_names]) / float(len(avg_small))
avg_large_success = np.sum([1 for v in ball_arrays if v[2] == 2 and abs(float(v[1])/float(max_balls) - np.mean(avg_small)) > abs(float(v[1])/float(max_balls) - np.mean(avg_large)) and v[3] in p2_names]) / float(len(avg_large))
s_d0 = [name for name in data["phase_2"].keys() if data["phase_2"][name]["language"]["features"] == 0]
s_d0 = np.nan if len(s_d0) == 0 else len([name for name in s_d0 if name in p2_names]) / float(len(s_d0))
s_d1 = [name for name in data["phase_2"].keys() if data["phase_2"][name]["language"]["features"] == 1]
s_d1 = np.nan if len(s_d1) == 0 else len([name for name in s_d1 if name in p2_names]) / float(len(s_d1))
s_d2 = [name for name in data["phase_2"].keys() if data["phase_2"][name]["language"]["features"] == 2]
s_d2 = np.nan if len(s_d2) == 0 else len([name for name in s_d2 if name in p2_names]) / float(len(s_d2))
s_d3 = [name for name in data["phase_2"].keys() if data["phase_2"][name]["language"]["features"] == 3]
s_d3 = np.nan if len(s_d3) == 0 else len([name for name in s_d3 if name in p2_names]) / float(len(s_d3))
a_d0 = [name for name in data["phase_1"].keys() if data["phase_1"][name]["language"]["features"] == 0]
a_d0 = np.nan if len(a_d0) == 0 else len([name for name in a_d0 if name in p1_names]) / float(len(a_d0))
a_d1 = [name for name in data["phase_1"].keys() if data["phase_1"][name]["language"]["features"] == 1]
a_d1 = np.nan if len(a_d1) == 0 else len([name for name in a_d1 if name in p1_names]) / float(len(a_d1))
if "trajectory" in data["phase_1"][list(data["phase_1"].keys())[0]]:
mae_p1 = np.mean([calcMAE(data["phase_1"][name]["trajectory"]["gt"], data["phase_1"][name]["trajectory"]["state"]) for name in data["phase_1"].keys()])
mae_p2 = np.mean([calcMAE(data["phase_2"][name]["trajectory"]["gt"], data["phase_2"][name]["trajectory"]["state"]) for name in data["phase_2"].keys()])
else:
mae_p1 = np.nan
mae_p2 = np.nan
vfeatures_total = np.sum([getUsedFeatures(data["phase_2"][name]["language"]["original"]) for name in data["phase_2"].keys()], axis=1)
if len(p2_names) == 0:
vfeatures_pass = [[]]
else:
vfeatures_pass = np.sum([getUsedFeatures(data["phase_2"][name]["language"]["original"]) for name in data["phase_2"].keys() if name in p2_names], axis=1)
unique, counts = np.unique(vfeatures_total, return_counts=True)
vfeatures_total = dict(zip(unique, counts))
unique, counts = np.unique(vfeatures_pass, return_counts=True)
vfeatures_pass = dict(zip(unique, counts))
vfeature_names = {0: "none", 1: "color", 2: "size", 3: "color + size", 4:"shape", 5:"color + shape", 6:"size + shape", 7:"color + size + shape"}
vfeature_success = {0: np.nan, 1: np.nan, 2: np.nan, 3: np.nan, 4:np.nan, 5:np.nan, 6:np.nan, 7:np.nan}
for i in range(8):
if i in vfeatures_total.keys():
if i in vfeatures_pass.keys():
vfeature_success[i] = float(vfeatures_pass[i])/float(vfeatures_total[i])
else:
vfeature_success[i] = 0.0
print("Overall results:")
print(" Pickup: {}/{} ({:.1f}%) successful".format(p1_success, num_tasks, float(p1_success)/num_tasks * 100.0))
print(" Pouring: {}/{} ({:.1f}%) successful".format(p2_success, num_tasks, float(p2_success)/num_tasks * 100.0))
print(" Consecutive: {}/{} ({:.1f}%) consecutive tasks successful".format(oa_success, num_tasks, float(oa_success)/num_tasks * 100.0))
print(" Objects: {:.1f}%".format(cdetect))
print(" Avg inside: {:.1f}% of dropped balls".format(averageBallSuccessPerTask(data) * 100.0))
print(" 'few'%: {:.1f}%".format(100*np.mean(avg_small)))
print(" 'many'%: {:.1f}%".format(100*np.mean(avg_large)))
print(" D0 success: {:.1f}%".format(s_d0*100))
print(" D1 success: {:.1f}%".format(s_d1*100))
print(" D2 success: {:.1f}%".format(100*s_d2))
print(" D3 success: {:.1f}%".format(100*s_d3))
print(" Distance: {:.1f}cm".format((odist_failure - odist_success) * 100))
print(" Detailed Features:")
for i in range(8):
print(" {}: {:.1f}% out of {}".format(vfeature_names[i], vfeature_success[i] * 100, 0 if i not in vfeatures_total.keys() else vfeatures_total[i]))
print("Latex:")
print("{:.2f} & {:.2f} & {:.2f} & {:.2f} & {:.2f} & {:.2f} & {:.2f} & {:.2f} & {:.2f} & {:.2f} & {:.2f} & {:.2f} & {:.2f} & {:.2f} & {:.2f} & {:.2f} ".format(
float(p1_success)/num_tasks,
float(p2_success)/num_tasks,
float(oa_success)/num_tasks,
cdetect / 100.0,
averageBallSuccessPerTask(data),
(avg_small_success + avg_large_success) / 2.0,
(mae_p1 + mae_p2)/2.0,
((odist_failure + odist_success) / 2.0 ) * 100,
vfeature_success[0],
vfeature_success[1],
vfeature_success[2],
vfeature_success[4],
vfeature_success[3],
vfeature_success[5],
vfeature_success[6],
vfeature_success[7]
))
def cleanJson(data):
def removeEmpty(phs):
delete = []
for key in data[phs].keys():
if "locations" not in data[phs][key].keys():
delete.append(key)
for key in delete:
data[phs].pop(key, None)
removeEmpty("phase_1")
removeEmpty("phase_2")
return data
if __name__ == "__main__":
path = FILE_PATH
with open(path, "r") as fh:
data = json.load(fh)
print(data.keys())
overallStatistics(data)