-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuild.py
188 lines (166 loc) · 7.76 KB
/
build.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import math
import os
import json
import tempfile
import argparse
import EMAN2
import emtiles.tiles
class EMDataBuilder(object):
"""Create an MBTiles SQLite database from an EMAN2-readable image.
Examples:
builder = EMDataBuilder("test.dm3", "test.dm3.mbtiles")
builder.build()
"""
def __init__(self, infile, outfile, tileformat='jpg', unlink=False):
"""Input image, output MBTiles."""
self.infile = infile
self.writer = emtiles.tiles.EMTile(outfile, tileformat=tileformat)
self.tileformat = tileformat
self.unlink = unlink
self.tmpdir = '.' # tempfile.mkdtemp(prefix='emtiles.')
def log(self, msg):
print msg
def build(self):
"""Build!"""
self.log("Building: %s"%(self.infile))
self.writer.create()
# EM files often contain stacks of images. Build for each image.
self.nimg = EMAN2.EMUtil.get_image_count(self.infile)
for index in range(self.nimg):
self.build_image(index)
self.writer.commit()
def build_image(self, index):
"""Build for an image index in the file."""
self.log("build_image: %s"%index)
img = EMAN2.EMData()
img.read_image(self.infile, index, True)
header = img.get_attr_dict()
if header['nz'] == 1:
# 2D Image
img2 = EMAN2.EMData()
img2.read_image(self.infile, index, False)
img2.process_inplace("normalize")
if self.nimg > 1:
# ... stack of 2D images.
self.build_nz(img2, index=index)
elif self.nimg == 1:
# regular old 2D image -- also generate power spectrum + tiles.
self.build_nz(img2, index=index)
else:
# 3D Image -- read region for each Z slice
for i in range(header['nz']):
region = EMAN2.Region(0, 0, i, header['nx'], header['ny'], 1)
img2 = EMAN2.EMData()
img2.read_image(self.infile, 0, False, region)
self.build_nz(img2, index=index, nz=i)
return header
def build_nz(self, img, nz=0, index=0):
"""Build tiles, thumbnails, pspec, etc. for a 2D EMData."""
for tile in self.build_tiles(img, nz=nz, index=index):
self.writer.insert_tile(*tile, unlink=self.unlink)
for info in self.build_pspec(img, nz=nz, index=index):
self.writer.insert_tileinfo(*info, unlink=self.unlink)
for info in self.build_fixed(img, nz=nz, index=index):
self.writer.insert_tileinfo(*info, unlink=self.unlink)
def build_tiles(self, img, index=0, nz=0, tilesize=256):
"""Build tiles for a 2D EMData."""
self.log("build_tiles: nz %s, index %s, tilesize: %s"%(nz, index, tilesize))
# Work with a copy of the EMData
img2 = img.copy()
# Calculate the number of zoom levels based on the tile size
levels = math.ceil( math.log( max(img.get_xsize(), img.get_ysize()) / float(tilesize), 2.0 ) )
# Tile header
header = img.get_attr_dict()
# Step through shrink range creating tiles
for level in range(int(levels), -1, -1):
self.log("... level: %s"%level)
rmin = img2.get_attr("mean") - img2.get_attr("sigma") * 3.0
rmax = img2.get_attr("mean") + img2.get_attr("sigma") * 3.0
# Center the image
nx = img2.get_xsize()
ny = img2.get_ysize()
nxoffset = (tilesize * 2**level - nx) / 2.0
nyoffset = (tilesize * 2**level - ny) / 2.0
print "nxoffset?:", nxoffset
print "nyoffset?:", nyoffset
for x in range(0, tilesize*2**level, tilesize):
for y in range(0, tilesize*2**level, tilesize):
# Write output
i = img2.get_clip(EMAN2.Region(x-nxoffset, y-nyoffset, tilesize, tilesize), fill=rmax)
i.set_attr("render_min", rmin)
i.set_attr("render_max", rmax)
fsp = "tile.index-%d.nz-%d.level-%d.x-%d.y-%d.%s"%(index, nz, level, x/tilesize, y/tilesize, self.tileformat)
fsp = os.path.join(self.tmpdir, fsp)
i.write_image(fsp)
# Insert into MBTiles
yield (fsp, index, nz, level, x/tilesize, y/tilesize)
# Shrink by 2 for next round.
img2.process_inplace("math.meanshrink",{"n":2})
def build_fixed(self, img, index=0, nz=0, tilesize=256):
"""Build thumbnail of a 2D EMData."""
# Output files
fsp = "fixed.index-%d.nz-%d.size-%d.png"%(index, nz, tilesize)
fsp = os.path.join(self.tmpdir, fsp)
# The scale factor
thumb_scale = img.get_xsize() / float(tilesize), img.get_ysize() / float(tilesize)
sc = 1 / max(thumb_scale)
if tilesize == 0 or sc >= 1.0:
# Tiny image, use full size.
img2 = img.copy()
else:
# Shrink the image
img2 = img.process("math.meanshrink", {'n':math.ceil(1/sc)})
# Adjust the brightness for rendering
rmin = img2.get_attr("mean") - img2.get_attr("sigma") * 3.0
rmax = img2.get_attr("mean") + img2.get_attr("sigma") * 3.0
img2.set_attr("render_min", rmin)
img2.set_attr("render_max", rmax)
img2.set_attr("jpeg_quality", 80)
img2.write_image(fsp)
yield fsp, index, nz, 'thumbnail', tilesize
def build_pspec(self, img, tilesize=512, nz=0, index=0):
"""Build a 2D FFT and 1D rotationally averaged power spectrum of a 2D EMData."""
# Output files
outfile = "pspec.index-%d.z-%d.size-%d.png"%(index, nz, tilesize)
outfile1d = "pspec1d.index-%d.z-%d.size-%d.json"%(index, nz, tilesize)
# Create a new image to hold the 2D FFT
nx, ny = img.get_xsize() / tilesize, img.get_ysize() / tilesize
a = EMAN2.EMData()
a.set_size(tilesize, tilesize)
# Create FFT
for y in range(1, ny-1):
for x in range(1, nx-1):
c = img.get_clip(EMAN2.Region(x*tilesize, y*tilesize, tilesize, tilesize))
c.process_inplace("normalize")
c.process_inplace("math.realtofft")
c.process_inplace("math.squared")
a += c
# Reset the center value
a.set_value_at(tilesize/2, tilesize/2, 0, .01)
# Adjust brightness
a -= a.get_attr("minimum") - a.get_attr("sigma") * .01
a.process_inplace("math.log")
a.set_attr("render_min", a.get_attr("minimum") - a.get_attr("sigma") * .1)
a.set_attr("render_max", a.get_attr("mean") + a.get_attr("sigma") * 4.0)
# Write out the PSpec png
fsp = os.path.join(self.tmpdir, outfile)
a.write_image(fsp)
yield fsp, index, nz, 'pspec', 512
# Calculate radial power spectrum
t = (tilesize/2)-1
y = a.calc_radial_dist(t, 1, 1, 0)
# Next version, I'll just insert data directly into MBTiles,
# without going to disk and back.
fsp = os.path.join(self.tmpdir, outfile1d)
with open(fsp, 'wb') as f:
json.dump(y, f)
yield fsp, index, nz, 'pspec_json', tilesize/2
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("infile", help="Input EM file")
parser.add_argument("outfile", help="Output MBTiles file")
parser.add_argument("--tileformat", help="Tile format", default="jpg")
parser.add_argument("--keep", help="Don't remove temporary tile files", action='store_true')
args = parser.parse_args()
builder = EMDataBuilder(args.infile, args.outfile, tileformat=args.tileformat, unlink=(not args.keep))
builder.build()