-
Notifications
You must be signed in to change notification settings - Fork 0
/
bloomfilter.py
91 lines (75 loc) · 2 KB
/
bloomfilter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import math
import mmh3
from bitarray import bitarray
class BloomFilter(object):
'''
Class for Bloom filter, using murmur3 hash function
'''
def __init__(self, items_count, fp_prob):
'''
items_count : int
Number of items expected to be stored in bloom filter
fp_prob : float
False Positive probability in decimal
'''
# False possible probability in decimal
self.fp_prob = fp_prob
# Size of bit array to use
self.size = self.get_size(items_count, fp_prob)
# number of hash functions to use
self.hash_count = self.get_hash_count(self.size, items_count)
# Bit array of given size
self.bit_array = bitarray(self.size)
# initialize all bits as 0
self.bit_array.setall(0)
def add(self, item):
'''
Add an item in the filter
'''
digests = []
for i in range(self.hash_count):
# create digest for given item.
# i work as seed to mmh3.hash() function
# With different seed, digest created is different
digest = mmh3.hash(item, i) % self.size
digests.append(digest)
# set the bit True in bit_array
self.bit_array[digest] = True
def check(self, item):
'''
Check for existence of an item in filter
'''
for i in range(self.hash_count):
digest = mmh3.hash(item, i) % self.size
if self.bit_array[digest] == False:
# if any of bit is False then,its not present
# in filter
# else there is probability that it exist
return False
return True
@classmethod
def get_size(self, n, p):
'''
Return the size of bit array(m) to used using
following formula
m = -(n * lg(p)) / (lg(2)^2)
n : int
number of items expected to be stored in filter
p : float
False Positive probability in decimal
'''
m = -(n * math.log(p))/(math.log(2)**2)
return int(m)
@classmethod
def get_hash_count(self, m, n):
'''
Return the hash function(k) to be used using
following formula
k = (m/n) * lg(2)
m : int
size of bit array
n : int
number of items expected to be stored in filter
'''
k = (m/n) * math.log(2)
return int(k)