-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathStOMP_report_plots.m
57 lines (45 loc) · 1.87 KB
/
StOMP_report_plots.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
clear all;
close all;
clc;
% Written in Matlab 2017a
% Meghasyam Tummalacherla
% ECE 285: Special Topics in Linear Algebra
% Orthogonal Matching Pursuit (OMP) and variants
% Code that plots the StOMP vs OMP performance plots from already generated data
%{
This code plots the already generated plots from the file StOMP_data.mat
Which are the plots of relative error (figure 6) of OMP vs StOMP, and
Probability of error in support (PES) (figure 7) of OMP vs StOMP, for a
given sparsity s0, with the matrix phi from the USE, the non zero elements
of the sparse vector x are picked uniformly from the range [-10 -1] U [1 10].
There is noise added of norm ||n||, labeled in the figure
%}
load('StOMP_data.mat');
for s0 = 1:6
figure(1);
subplot(6,2,2*s0-1);
imagesc(flipud(rel_error_cell_omp(:,:,s0)));
title(['OMP, ' 's0 = ' num2str(s0_vec(s0)) ', ||\eta||_2 = ' num2str(n_eta_norm_vec(s0))]);
colormap('gray');colorbar;caxis([0 1]);
ax = gca;
ax.YTickLabel = [50 40 30 20 10];
subplot(6,2,2*s0);
imagesc(flipud(rel_error_cell_stomp(:,:,s0)));
title(['StOMP, ' 's0 = ' num2str(s0_vec(s0)) ', ||\eta||_2 = ' num2str(n_eta_norm_vec(s0))]);
colormap('gray');colorbar;caxis([0 1]);
ax = gca;
ax.YTickLabel = [50 40 30 20 10];
figure(2);
subplot(6,2,2*s0-1);
imagesc(flipud(pes_error_cell_omp(:,:,s0)));
title(['OMP, ' 's0 = ' num2str(s0_vec(s0)) ', ||\eta||_2 = ' num2str(n_eta_norm_vec(s0))]);
colormap('gray');colorbar;caxis([0 1]);
ax = gca;
ax.YTickLabel = [50 40 30 20 10];
subplot(6,2,2*s0);
imagesc(flipud(pes_error_cell_stomp(:,:,s0)));
title(['StOMP, ' 's0 = ' num2str(s0_vec(s0)) ', ||\eta||_2 = ' num2str(n_eta_norm_vec(s0))]);
colormap('gray');colorbar;caxis([0 1]);
ax = gca;
ax.YTickLabel = [50 40 30 20 10];
end