Título | Autor |
---|---|
En ℝ, {0 < ε, ε ≤ 1, |x| < ε, |y| < ε} ⊢ |xy| < ε |
José A. Alonso |
Demostrar con Lean4 que en ℝ [ {0 < ε, ε ≤ 1, |x| < ε, |y| < ε} ⊢ |xy| < ε ]
Para ello, completar la siguiente teoría de Lean4:
import Mathlib.Data.Real.Basic
example :
∀ {x y ε : ℝ}, 0 < ε → ε ≤ 1 → |x| < ε → |y| < ε → |x * y| < ε :=
by sorry
Demostración en lenguaje natural
[mathjax] Se usarán los siguientes lemas \begin{align} &|a·b| = |a|·|b| \tag{L1} \ &0·a = 0 \tag{L2} \ &0 ≤ |a| \tag{L3} \ &a ≤ b → a ≠ b → a < b \tag{L4} \ &a ≠ b ↔ b ≠ a \tag{L5} \ &0 < a → (ab < ac ↔ b < c) \tag{L6} \ &0 < a → (ba < ca ↔ b < c) \tag{L7} \ &0 < a → (ba ≤ ca ↔ b ≤ c) \tag{L8} \ &1·a = a \tag{L9} \ \end{align}
Sean (x, y, ε ∈ ℝ) tales que \begin{align} 0 &< ε \tag{he1} \ ε &≤ 1 \tag{he2} \ |x| &< ε \tag{hx} \ |y| &< ε \tag{hy} \end{align} y tenemos que demostrar que [ |xy| < ε ] Lo haremos distinguiendo caso según (|x| = 0).
1º caso. Supongamos que [ |x| = 0 \tag{1} ] Entonces, \begin{align} |xy| &= |x||y| &&\text{[por L1]} \ &= 0|y| &&\text{[por h1]} \ &= 0 &&\text{[por L2]} \ &< ε &&\text{[por he1]} \end{align}
2º caso. Supongamos que [ |x| ≠ 0 \tag{2} ] Entonces, por L4, L3 y L5, se tiene [ 0 < x \tag{3} ] y, por tanto, \begin{align} |xy| &= |x||y| &&\text{[por L1]} \ &< |x|ε &&\text{[por L6, (3) y (hy)]} \ &< εε &&\text{[por L7, (he1) y (hx)]} \ &≤ 1ε &&\text{[por L8, (he1) y (he2)]} \ &= ε &&\text{[por L9]} \end{align}
Demostraciones con Lean4
import Mathlib.Data.Real.Basic
-- 1ª demostración
-- ===============
example :
∀ {x y ε : ℝ}, 0 < ε → ε ≤ 1 → |x| < ε → |y| < ε → |x * y| < ε :=
by
intros x y ε he1 he2 hx hy
by_cases h : (|x| = 0)
. -- h : |x| = 0
show |x * y| < ε
calc
|x * y|
= |x| * |y| := abs_mul x y
_ = 0 * |y| := by rw [h]
_ = 0 := zero_mul (abs y)
_ < ε := he1
. -- h : ¬|x| = 0
have h1 : 0 < |x| := by
have h2 : 0 ≤ |x| := abs_nonneg x
show 0 < |x|
exact lt_of_le_of_ne h2 (ne_comm.mpr h)
show |x * y| < ε
calc |x * y|
= |x| * |y| := abs_mul x y
_ < |x| * ε := (mul_lt_mul_left h1).mpr hy
_ < ε * ε := (mul_lt_mul_right he1).mpr hx
_ ≤ 1 * ε := (mul_le_mul_right he1).mpr he2
_ = ε := one_mul ε
-- 2ª demostración
-- ===============
example :
∀ {x y ε : ℝ}, 0 < ε → ε ≤ 1 → |x| < ε → |y| < ε → |x * y| < ε :=
by
intros x y ε he1 he2 hx hy
by_cases (|x| = 0)
. -- h : |x| = 0
show |x * y| < ε
calc
|x * y| = |x| * |y| := by apply abs_mul
_ = 0 * |y| := by rw [h]
_ = 0 := by apply zero_mul
_ < ε := by apply he1
. -- h : ¬|x| = 0
have h1 : 0 < |x| := by
have h2 : 0 ≤ |x| := by apply abs_nonneg
exact lt_of_le_of_ne h2 (ne_comm.mpr h)
show |x * y| < ε
calc
|x * y| = |x| * |y| := by rw [abs_mul]
_ < |x| * ε := by apply (mul_lt_mul_left h1).mpr hy
_ < ε * ε := by apply (mul_lt_mul_right he1).mpr hx
_ ≤ 1 * ε := by apply (mul_le_mul_right he1).mpr he2
_ = ε := by rw [one_mul]
-- 3ª demostración
-- ===============
example :
∀ {x y ε : ℝ}, 0 < ε → ε ≤ 1 → |x| < ε → |y| < ε → |x * y| < ε :=
by
intros x y ε he1 he2 hx hy
by_cases (|x| = 0)
. -- h : |x| = 0
show |x * y| < ε
calc |x * y| = |x| * |y| := by simp only [abs_mul]
_ = 0 * |y| := by simp only [h]
_ = 0 := by simp only [zero_mul]
_ < ε := by simp only [he1]
. -- h : ¬|x| = 0
have h1 : 0 < |x| := by
have h2 : 0 ≤ |x| := by simp only [abs_nonneg]
exact lt_of_le_of_ne h2 (ne_comm.mpr h)
show |x * y| < ε
calc
|x * y| = |x| * |y| := by simp [abs_mul]
_ < |x| * ε := by simp only [mul_lt_mul_left, h1, hy]
_ < ε * ε := by simp only [mul_lt_mul_right, he1, hx]
_ ≤ 1 * ε := by simp only [mul_le_mul_right, he1, he2]
_ = ε := by simp only [one_mul]
-- Lemas usados
-- ============
-- variable (a b c : ℝ)
-- #check (abs_mul a b : |a * b| = |a| * |b|)
-- #check (abs_nonneg a : 0 ≤ |a|)
-- #check (lt_of_le_of_ne : a ≤ b → a ≠ b → a < b)
-- #check (mul_le_mul_right : 0 < a → (b * a ≤ c * a ↔ b ≤ c))
-- #check (mul_lt_mul_left : 0 < a → (a * b < a * c ↔ b < c))
-- #check (mul_lt_mul_right : 0 < a → (b * a < c * a ↔ b < c))
-- #check (ne_comm : a ≠ b ↔ b ≠ a)
-- #check (one_mul a : 1 * a = a)
-- #check (zero_mul a : 0 * a = 0)
Demostraciones interactivas
Se puede interactuar con las demostraciones anteriores en Lean 4 Web.
Referencias
- J. Avigad y P. Massot. Mathematics in Lean, p. 24.