-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPropiedad_de_monotonia_de_la_interseccion.thy
73 lines (66 loc) · 1.62 KB
/
Propiedad_de_monotonia_de_la_interseccion.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
(* Propiedad_de_monotonia_de_la_interseccion.lean
Si s \<subseteq> t, entonces s \<inter> u \<subseteq> t \<inter> u.
José A. Alonso Jiménez
Sevilla, 20 de febrero de 2024
---------------------------------------------------------------------
*)
(* ---------------------------------------------------------------------
-- Demostrar que si
-- s \<subseteq> t
-- entonces
-- s \<inter> u \<subseteq> t \<inter> u
-- ------------------------------------------------------------------ *)
theory Propiedad_de_monotonia_de_la_interseccion
imports Main
begin
(* 1\<ordfeminine> solución *)
lemma
assumes "s \<subseteq> t"
shows "s \<inter> u \<subseteq> t \<inter> u"
proof (rule subsetI)
fix x
assume hx: "x \<in> s \<inter> u"
have xs: "x \<in> s"
using hx
by (simp only: IntD1)
then have xt: "x \<in> t"
using assms
by (simp only: subset_eq)
have xu: "x \<in> u"
using hx
by (simp only: IntD2)
show "x \<in> t \<inter> u"
using xt xu
by (simp only: Int_iff)
qed
(* 2 solución *)
lemma
assumes "s \<subseteq> t"
shows "s \<inter> u \<subseteq> t \<inter> u"
proof
fix x
assume hx: "x \<in> s \<inter> u"
have xs: "x \<in> s"
using hx
by simp
then have xt: "x \<in> t"
using assms
by auto
have xu: "x \<in> u"
using hx
by simp
show "x \<in> t \<inter> u"
using xt xu
by simp
qed
(* 3\<ordfeminine> solución *)
lemma
assumes "s \<subseteq> t"
shows "s \<inter> u \<subseteq> t \<inter> u"
using assms
by auto
(* 4\<ordfeminine> solución *)
lemma
"s \<subseteq> t \<Longrightarrow> s \<inter> u \<subseteq> t \<inter> u"
by auto
end