From e34b6dd545c77cfa5cf8a85f3e776a3105b29648 Mon Sep 17 00:00:00 2001 From: Jacan Chaplais Date: Fri, 31 May 2024 16:19:40 +0100 Subject: [PATCH] removed deprecated packages for 0.4.0 release --- graphicle/calculate.py | 236 ----------------------------------------- 1 file changed, 236 deletions(-) diff --git a/graphicle/calculate.py b/graphicle/calculate.py index f32ff96..d13c1d1 100644 --- a/graphicle/calculate.py +++ b/graphicle/calculate.py @@ -13,14 +13,11 @@ import operator as op import typing as ty import warnings -from functools import lru_cache, partial -import networkx as nx import numba as nb import numpy as np import numpy.lib.recfunctions as rfn import scipy.optimize as spo -from deprecation import deprecated from . import base @@ -28,13 +25,9 @@ from graphicle.data import * __all__ = [ - "azimuth_centre", - "pseudorapidity_centre", - "rapidity_centre", "weighted_centroid", "resultant_coords", "combined_mass", - "flow_trace", "aggregate_momenta", "cluster_coeff_distbn", "thrust", @@ -49,96 +42,6 @@ ) -@deprecated( - deprecated_in="0.3.1", - removed_in="0.4.0", - details="Use ``weighted_centroid()`` or ``resultant_coords()`` instead.", -) -def azimuth_centre(pmu: "MomentumArray", pt_weight: bool = True) -> float: - """Calculates the central point in azimuth for a set of particles. - - :group: calculate - - .. versionadded:: 0.1.7 - - .. versionchanged:: 0.3.1 - The ``pt_weight`` parameter implementation has been corrected. - Previous versions resulted in :math:`p_T`-weighting when - ``False``, and :math:`p_T^2`-weighting when ``True``. - - Parameters - ---------- - pmu : MomentumArray - Four-momenta of the particles. - pt_weight : bool - If ``True``, will weight the contributions of each particle by - transverse momentum. Similar to finding a centre-of-mass, but - for transverse momentum. Default is ``True``. - - Returns - ------- - float - The centre of the particle set in the azimuth dimension. - """ - pol = pmu._xy_pol - if not pt_weight: - pol = pol / pmu.pt - return np.angle(pol.sum()).item() - - -@deprecated( - deprecated_in="0.3.1", - removed_in="0.4.0", - details="Use ``weighted_centroid()`` or ``resultant_coords()`` instead.", -) -def pseudorapidity_centre(pmu: "MomentumArray") -> float: - """Calculates the central point in pseudorapidity for a set of - particles. - - :group: calculate - - .. versionadded:: 0.1.7 - - Parameters - ---------- - pmu : MomentumArray - Four-momenta of the particles. - - Returns - ------- - float - The :math:`p_T` weighted centre of the particle set in the - pseudorapidity dimension. - """ - return ((pmu.eta * pmu.pt).sum() / pmu.pt.sum()).item() - - -@deprecated( - deprecated_in="0.3.1", - removed_in="0.4.0", - details="Use ``weighted_centroid()`` or ``resultant_coords()`` instead.", -) -def rapidity_centre(pmu: "MomentumArray") -> float: - """Calculates the central point in rapidity for a set of particles. - - :group: calculate - - .. versionadded:: 0.2.11 - - Parameters - ---------- - pmu : MomentumArray - Four-momenta of the particles. - - Returns - ------- - float - The :math:`p_T` weighted centre of the particle set in the - rapidity dimension. - """ - return (pmu.rapidity * pmu.pt).sum() / pmu.pt.sum() - - def weighted_centroid( pmu: "MomentumArray", pseudo: bool = True ) -> ty.Tuple[float, float]: @@ -286,145 +189,6 @@ def combined_mass( return mass -def _diffuse(colors: ty.List[base.AnyVector], feats: ty.List[base.AnyVector]): - color_shape = colors[0].shape - av_color = np.zeros((color_shape[0], color_shape[1]), dtype=" base.AnyVector: - len_basis = len(basis) - feat_fmt = rfn.structured_to_unstructured if is_structured else lambda x: x - color = np.zeros((len_basis, feat_dim), dtype=" ty.Dict[str, base.DoubleVector]: - """Performs flow tracing from specified particles in an event, back - to the hard partons. - - :group: calculate - - .. versionadded:: 0.1.0 - - Parameters - ---------- - graph : Graphicle - Full particle event, containing hard partons, showering and - hadronisation. - mask : MaskArray or MaskGroup or ndarray[bool_] - Boolean mask identifying which particles should have their - ancestry traced. - prop : ArrayBase or ndarray[any] - Property to trace back, *eg.* 4-momentum, charge, *etc*. Must be - the same shape as arrays stored in graph. Can be structured, - unstructured, or a graphicle array, though unstructured arrays - must be 1D. - exclusive : bool - If ``True``, double counting from descendant particles in the - hard event will be switched off. *eg.* for event ``t > b W+``, - descendants of ``b`` will show no contribution from ``t``, as - ``b`` is a subset of ``t``. Default is ``False``. - target : set[int], optional - Highlights specific partons in the hard event to decompose - properties with respect to. If unset, will use all partons in - hard event, except for incoming partons. - - Returns - ------- - trace_array : dict[str, ndarray] - Keys are parton names, arrays represent the contributions of - hard partons traced down to the properties of the selected - subset of particles specified by mask. - """ - if isinstance(prop, base.ArrayBase): - prop = prop.data - # encoding graph features onto NetworkX - nx_graph = nx.DiGraph() - graph_dict = graph.adj.to_dicts(edge_data={"feat": prop}) - example_feat = graph_dict["edges"][0][2]["feat"] - try: - feat_dim = len(example_feat) - dtype = example_feat.dtype - except TypeError: - feat_dim = 1 - dtype = np.dtype(type(example_feat)) - is_structured = dtype.names is not None - nx_graph.add_edges_from(graph_dict["edges"]) - # identify the hard ancestors to which we trace - hard_mask = graph.hard_mask.copy() - del hard_mask["incoming"] - hard_graph = graph[hard_mask.bitwise_or()] - if target: # restrict hard partons to user specified pdgs - target_mask = hard_graph.pdg.mask( - list(target), blacklist=False, sign_sensitive=True - ) - hard_graph = hard_graph[target_mask] - names, vtxs = tuple(hard_graph.pdg.name), tuple(hard_graph.edges["dst"]) - # out vertices of user specified particles - focus_pcls = graph.edges[mask]["dst"] - trc = np.array( - [ - _trace_vector( - nx_graph, pcl, vtxs, feat_dim, is_structured, exclusive - ) - for pcl in focus_pcls - ] - ) - _trace_vector.cache_clear() - traces = dict() - array_fmt: ty.Callable[[base.AnyVector], base.AnyVector] = ( - partial(rfn.unstructured_to_structured, dtype=dtype) # type: ignore - if is_structured - else lambda x: x.squeeze() - ) - - for i, name in enumerate(names): - traces[name] = array_fmt(trc[:, i, :]) - return traces - - @nb.njit("float64[:](float64[:], float64[:], float64)", cache=True) def _rapidity( energy: base.DoubleVector, z: base.DoubleVector, zero_tol: float