Skip to content

Latest commit

 

History

History
38 lines (32 loc) · 1.28 KB

README.md

File metadata and controls

38 lines (32 loc) · 1.28 KB

YOLOv5 implementation using TensorFlow 2

Train

  • Change data_dir, image_dir, label_dir and class_dict in config.py
  • Choose version in config.py
  • Optional, python main.py --anchor to generate anchors for your dataset and change anchors in config.py
  • Optional, python main.py --record to generate tf-record for your dataset
  • Run python main.py --train for training

Test

  • Run python main.py --test

Dataset structure

├── Dataset folder 
    ├── images
        ├── 1111.jpg
        ├── 2222.jpg
    ├── labels
        ├── 1111.xml
        ├── 2222.xml
    ├── train.txt
    ├── test.txt

Note

  • xml file should be in PascalVOC format
  • train.txt test.txt contains image names without extension

Recommendation (for docker users)

  • docker pull nvcr.io/nvidia/tensorflow:20.12-tf2-py3
  • nvidia-docker run --gpus all -v /your/project/folder:/Projects -it nvcr.io/nvidia/tensorflow:20.12-tf2-py3
  • cd ../Projects
  • apt-get update
  • apt-get install ffmpeg libsm6 libxext6 -y
  • pip install opencv-python

Reference